Abstract

We report a new nematic liquid crystal (LC) mixture with an ultra-low rotational viscosity (γ1 = 53.4 mPas @ 35°C), relatively high birefringence (Δn ≈0.15), and moderate dielectric anisotropy (Δε = −2.80 @ 35°C). When employed in a liquid-crystal-on-silicon (LCoS) projector with RGB light-emitting diodes (LEDs), a sub-millisecond response time is obtained without the need for complicated overdrive circuitry. Such a fast response time enables field sequential color display, which not only triples the optical efficiency and resolution density, but also greatly suppresses the image blur and color breakup. Moreover, the required cell gap is 1.2 µm, which is still manageable for high-yield manufacturing. We believe this mixture would find widespread applications for the emerging augmented reality displays.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast-response liquid crystal phase modulators for augmented reality displays

Yuge Huang, Ziqian He, and Shin-Tson Wu
Opt. Express 25(26) 32757-32766 (2017)

Submillisecond-response liquid crystal for high-resolution virtual reality displays

Fangwang Gou, Haiwei Chen, Ming-Chun Li, Seok-Lyul Lee, and Shin-Tson Wu
Opt. Express 25(7) 7984-7997 (2017)

Fast-response liquid crystals for high image quality wearable displays

Zhenyue Luo, Fenglin Peng, Haiwei Chen, Minggang Hu, Jian Li, Zhongwei An, and Shin-Tson Wu
Opt. Mater. Express 5(3) 603-610 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Armitage, I. Underwood, and S. T. Wu, Introduction to Miscrodisplay (John Wiley & Sons, 2006).
  2. D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011).
    [Crossref]
  3. K. Y. Chen, Y. W. Li, K. H. Fan-Chiang, H. C. Kuo, and H. C. Tsai, “Color sequential front-lit LCOS for wearable displays,” SID Int. Symp. Digest Tech. Papers 46(1), 1737–1740 (2015).
  4. Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
    [Crossref]
  5. J. Christmas and N. Collings, “Realizing automotive holographic head up displays,” SID Int. Symp. Digest Tech. Papers 47(1), 1017–1020 (2016).
  6. R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
    [Crossref]
  7. F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
    [Crossref]
  8. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
    [Crossref]
  9. S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
    [Crossref]
  10. T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liquid Crystal Today 21(2), 34–41 (2012).
    [Crossref]
  11. A. Srivastava, V. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
    [Crossref]
  12. L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012).
    [Crossref]
  13. R. M. Hyman, A. Lorenz, S. M. Morris, and T. D. Wilkinson, “Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device,” Appl. Opt. 53(29), 6925–6929 (2014).
    [Crossref] [PubMed]
  14. Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
    [Crossref]
  15. C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005).
    [Crossref]
  16. M. S. Brennesholtz, “New-technology light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 39(1), 858–861 (2008).
  17. K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 37(1), 1823–1826 (2006).
    [Crossref]
  18. H. Mönch, G. Derra, and E. Fischer, “Optimised light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 30(1), 1076–1079 (1999).
    [Crossref]
  19. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
    [Crossref]
  20. Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013).
    [Crossref]
  21. S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
    [Crossref] [PubMed]
  22. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
    [Crossref]
  23. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
    [Crossref] [PubMed]
  24. S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
    [Crossref]
  25. H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
    [Crossref]
  26. H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
    [Crossref]

2016 (2)

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

2015 (3)

2014 (2)

2013 (2)

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013).
[Crossref]

2012 (2)

T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liquid Crystal Today 21(2), 34–41 (2012).
[Crossref]

L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012).
[Crossref]

2011 (1)

D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011).
[Crossref]

2009 (1)

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

2005 (1)

C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005).
[Crossref]

1997 (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

1990 (2)

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

1986 (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

1984 (1)

1975 (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

An, Z.

Chen, H.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Chen, Y.

Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013).
[Crossref]

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

Chigrinov, V.

A. Srivastava, V. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Coutino, P.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Cuypers, D.

D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011).
[Crossref]

De Smet, H.

D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011).
[Crossref]

Efron, U.

Gauza, S.

C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005).
[Crossref]

Gou, F.

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Haller, I.

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

He, S.

L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012).
[Crossref]

Hess, L. D.

Hu, M.

Huang, Y.

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Huang, Y. P.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Hyman, R. M.

Kosa, T.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Kwok, H. S.

A. Srivastava, V. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Lee, S. L.

Li, J.

Li, M. C.

Lin, F. C.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Lorenz, A.

Luo, Z.

Morris, S. M.

Peng, F.

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013).
[Crossref]

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

Rao, L.

L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012).
[Crossref]

Schadt, M.

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Shieh, H. P. D.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Song, X.

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

Srivastava, A.

A. Srivastava, V. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Tan, G.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Tsai, W. C.

Van Calster, A.

D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011).
[Crossref]

Wei, C. M.

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

Wen, C. H.

C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005).
[Crossref]

Wilkinson, T. D.

Wu, C. S.

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Wu, S. T.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

Z. Luo, F. Peng, H. Chen, M. Hu, J. Li, Z. An, and S. T. Wu, “Fast-response liquid crystals for high image quality wearable displays,” Opt. Mater. Express 5(3), 603–610 (2015).
[Crossref]

H. Chen, M. Hu, F. Peng, J. Li, Z. An, and S. T. Wu, “Ultra-low viscosity liquid crystals,” Opt. Mater. Express 5(3), 655–660 (2015).
[Crossref]

H. Chen, F. Peng, Z. Luo, D. Xu, S. T. Wu, M. C. Li, S. L. Lee, and W. C. Tsai, “High performance liquid crystal displays with a low dielectric constant material,” Opt. Mater. Express 4(11), 2262–2273 (2014).
[Crossref]

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013).
[Crossref]

L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012).
[Crossref]

C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005).
[Crossref]

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23(21), 3911–3915 (1984).
[Crossref] [PubMed]

Xu, D.

Yamaguchi, T.

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

Zhu, R.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Annu. Rev. Mater. Sci. (1)

M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

C. H. Wen, S. Gauza, and S. T. Wu, “High-contrast vertical alignment of lateral difluoro-terphenyl liquid crystals,” Appl. Phys. Lett. 87(19), 191909 (2005).
[Crossref]

S. T. Wu, “Nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57(10), 986–988 (1990).
[Crossref]

Crystals (1)

Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S. T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals 3(3), 483–503 (2013).
[Crossref]

J. Disp. Technol. (3)

D. Cuypers, H. De Smet, and A. Van Calster, “VAN LCOS Microdisplays: A decade of technological evolution,” J. Disp. Technol. 7(3), 127–134 (2011).
[Crossref]

Y. Chen, F. Peng, and S. T. Wu, “Submillisecond-response vertically-aligned liquid crystal for color-sequential projection displays,” J. Disp. Technol. 9(2), 78–81 (2013).
[Crossref]

L. Rao, S. He, and S. T. Wu, “Blue-phase liquid crystals for reflective projection displays,” J. Disp. Technol. 8(10), 555–557 (2012).
[Crossref]

J. Soc. Inf. Disp. (4)

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

F. Peng, F. Gou, H. Chen, Y. Huang, and S. T. Wu, “A submillisecond-response liquid crystal for color sequential projection displays,” J. Soc. Inf. Disp. 24(4), 241–245 (2016).
[Crossref]

F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color-breakup suppression and low-power consumption by using the Stencil-FSC method in field-sequential LCDs,” J. Soc. Inf. Disp. 17(3), 221–228 (2009).
[Crossref]

A. Srivastava, V. Chigrinov, and H. S. Kwok, “Ferroelectric liquid crystals: Excellent tool for modern displays and photonics,” J. Soc. Inf. Disp. 23(6), 253–272 (2015).
[Crossref]

Liq. Cryst. (1)

S. T. Wu and C. S. Wu, “Rotational viscosity of nematic liquid crystals A critical examination of existing models,” Liq. Cryst. 8(2), 171–182 (1990).
[Crossref]

Liquid Crystal Today (1)

T. D. Wilkinson, “Ferroelectric liquid crystal over silicon devices,” Liquid Crystal Today 21(2), 34–41 (2012).
[Crossref]

Opt. Mater. Express (3)

Phys. Rev. A Gen. Phys. (1)

S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A Gen. Phys. 33(2), 1270–1274 (1986).
[Crossref] [PubMed]

Prog. Solid State Chem. (1)

I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10(2), 103–118 (1975).
[Crossref]

Other (6)

J. Christmas and N. Collings, “Realizing automotive holographic head up displays,” SID Int. Symp. Digest Tech. Papers 47(1), 1017–1020 (2016).

K. Y. Chen, Y. W. Li, K. H. Fan-Chiang, H. C. Kuo, and H. C. Tsai, “Color sequential front-lit LCOS for wearable displays,” SID Int. Symp. Digest Tech. Papers 46(1), 1737–1740 (2015).

D. Armitage, I. Underwood, and S. T. Wu, Introduction to Miscrodisplay (John Wiley & Sons, 2006).

M. S. Brennesholtz, “New-technology light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 39(1), 858–861 (2008).

K. Beeson, S. Zimmerman, W. Livesay, R. Ross, C. Livesay, and K. Livesay, “LED-based light-recycling light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 37(1), 1823–1826 (2006).
[Crossref]

H. Mönch, G. Derra, and E. Fischer, “Optimised light sources for projection displays,” SID Int. Symp. Digest Tech. Papers 30(1), 1076–1079 (1999).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Temperature dependent birefringence of UCF-N5 at λ = 633 nm. Dots are experimental data and solid line is fitting curve with Eq. (1).
Fig. 2
Fig. 2 Wavelength dependent birefringence of UCF-N5 at T = 35°C. Dots are experimental data and solid line is fitting curve with Eq. (2).
Fig. 3
Fig. 3 Temperature dependent γ1/K33 of UCF-N5. Dots are experimental data and solid line is fitting curve with Eq. (3).
Fig. 4
Fig. 4 Simulated VR curves of a VA LCoS using UCF-N5. Cell gap d = 1.2 µm.

Tables (4)

Tables Icon

Table 1 Chemical structures and compositions of UCF-N5.

Tables Icon

Table 2 Measured physical properties of UCF-N5 at T = 35°C, and f = 1 kHz.

Tables Icon

Table 3 Reflectance and driving voltage for each corresponding gray level.

Tables Icon

Table 4 Calculated (left) and measured (right) GTG response time of the reflective VA cell at T = 35°C. (unit: ms)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn(T)=Δ n 0 S=Δ n 0 (1T/ T c ) β ,
Δn=G λ 2 λ *2 λ 2 λ *2 ,
γ 1 K 33 = aexp( E a / k B T) (1T/ T c ) β ,

Metrics