Abstract

We demonstrate narrow bandwidth templated cholesteric liquid crystal films. The reflection bandwidth of these films can be dramatically narrowed with the reduced birefringence of refilled materials. Different materials from liquid crystals with anisotropic refractive index to toluene with isotropic refractive index have been refilled to polymer scaffolds with helical structures which originate from the periodic arrangement of cholesteric liquid crystals. The temperature effect on the linewidth of the films is also studied. A full-color reflective display is experimentally demonstrated based on these flexible reflective films that are refilled with small birefringence liquid crystals. The applications of these flexible films include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical thermal sensor based on cholesteric film refilled with mixture of toluene and ethanol

Yong Li, Yanjun Liu, and Dan Luo
Opt. Express 25(21) 26349-26355 (2017)

Dynamic control of colorful reflection toward practical cholesteric liquid crystal displays

Yo Inoue and Hiroshi Moritake
Opt. Express 24(20) 23027-23036 (2016)

Bandwidth broadening induced by ionic interactions in polymer stabilized cholesteric liquid crystals

Vincent P. Tondiglia, Lalgudi V. Natarajan, Christopher A. Bailey, Michael E. McConney, Kyung Min Lee, Timothy J. Bunning, Rafael Zola, Hossein Nemati, Deng-Ke Yang, and Timothy J. White
Opt. Mater. Express 4(7) 1465-1472 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).
  2. M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
    [Crossref] [PubMed]
  3. G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
    [Crossref] [PubMed]
  4. Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
    [Crossref] [PubMed]
  5. I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).
  6. V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
    [Crossref] [PubMed]
  7. Y. Huang, Y. Zhou, C. Doyle, and S. T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express 14(3), 1236–1242 (2006).
    [Crossref] [PubMed]
  8. S. Y. Lu and L. C. Chien, “A polymer stabilized single layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
    [Crossref]
  9. H. Lu, W. Xu, Z. Song, S. Zhang, L. Qiu, X. Wang, G. Zhang, J. Hu, and G. Lv, “Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid,” Opt. Lett. 39(24), 6795–6798 (2014).
    [Crossref] [PubMed]
  10. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
    [Crossref]
  11. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23(21), 1707–1709 (1998).
    [Crossref] [PubMed]
  12. S.-T. Wu and D.-k. Yang, “Reflective liquid crystal displays,” Wiley, West Sussex, UK (2001).
  13. K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
    [Crossref]
  14. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  15. Y. C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
    [Crossref] [PubMed]
  16. N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
    [Crossref]
  17. K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
    [Crossref]
  18. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
    [Crossref] [PubMed]
  19. J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
    [Crossref]
  20. J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
    [Crossref]
  21. M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
    [Crossref] [PubMed]
  22. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
    [Crossref] [PubMed]
  23. J. D. Lin, C. L. Chu, H. Y. Lin, B. You, C. T. Horng, S. Y. Huang, T. S. Mo, C. Y. Huang, and C. R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples,” Opt. Mater. Express 5(6), 1419–1430 (2015).
    [Crossref]
  24. S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
    [Crossref]
  25. K.-S. Bae, U. Cha, Y.-J. Lee, Y.-K. Moon, H. C. Choi, J.-H. Kim, and C.-J. Yu, “Single pixel transmissive and reflective liquid crystal display using broadband cholesteric liquid crystal film,” Opt. Express 19(9), 8291–8296 (2011).
    [Crossref] [PubMed]
  26. Y. T. Lin and T. H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
    [Crossref]
  27. J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
    [Crossref] [PubMed]
  28. D. M. Makow, “Peak reflectance and color gamut of superimposed leftand right-handed cholesteric liquid crystals,” Appl. Opt. 19(8), 1274–1277 (1980).
    [Crossref] [PubMed]
  29. G. Petriashvili, K. Japaridze, L. Devadze, C. Zurabishvili, N. Sepashvili, N. Ponjavidze, M. P. De Santo, M. A. Matranga, R. Hamdi, F. Ciuchi, and R. Barberi, “Paper like cholesteric interferential mirror,” Opt. Express 21(18), 20821–20830 (2013).
    [Crossref] [PubMed]
  30. Y. Chen and S.-T. Wu, “Electric field-induced monodomain blue phase liquid crystals,” Appl. Phys. Lett. 102(17), 171110 (2013).
    [Crossref]
  31. C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
    [Crossref]
  32. Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691–696 (2016).
    [Crossref]
  33. Y. Li, D. Luo, and R. Chen, “Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen,” IEEE Photonics J. 8(4), 1503206 (2016).
  34. M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
    [Crossref] [PubMed]
  35. M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
    [Crossref]
  36. R. W. Pridmore, “Chromatic luminance, colorimetric purity, and optimal aperture-color Stimuli,” Color Res. Appl. 32(6), 469–476 (2007).
    [Crossref]
  37. A. K. R. Choudhury, Principles of Colour and Appearance Measurement: Visual Measurement of Colour, Colour Comparison and Management (Woodhead Publishing, 2014).

2016 (4)

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
[Crossref]

Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691–696 (2016).
[Crossref]

Y. Li, D. Luo, and R. Chen, “Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen,” IEEE Photonics J. 8(4), 1503206 (2016).

2015 (5)

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

J. D. Lin, C. L. Chu, H. Y. Lin, B. You, C. T. Horng, S. Y. Huang, T. S. Mo, C. Y. Huang, and C. R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples,” Opt. Mater. Express 5(6), 1419–1430 (2015).
[Crossref]

Y. C. Hsiao and W. Lee, “Electrically induced red, green, and blue scattering in chiral-nematic thin films,” Opt. Lett. 40(7), 1201–1203 (2015).
[Crossref] [PubMed]

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

2014 (3)

H. Lu, W. Xu, Z. Song, S. Zhang, L. Qiu, X. Wang, G. Zhang, J. Hu, and G. Lv, “Electrically switchable multi-stable cholesteric liquid crystal based on chiral ionic liquid,” Opt. Lett. 39(24), 6795–6798 (2014).
[Crossref] [PubMed]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

2011 (4)

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

K.-S. Bae, U. Cha, Y.-J. Lee, Y.-K. Moon, H. C. Choi, J.-H. Kim, and C.-J. Yu, “Single pixel transmissive and reflective liquid crystal display using broadband cholesteric liquid crystal film,” Opt. Express 19(9), 8291–8296 (2011).
[Crossref] [PubMed]

Y. T. Lin and T. H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

2010 (3)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

V. Y. Zyryanov, S. A. Myslivets, V. A. Gunyakov, A. M. Parshin, V. G. Arkhipkin, V. F. Shabanov, and W. Lee, “Magnetic-field tunable defect modes in a photonic-crystal/liquid-crystal cell,” Opt. Express 18(2), 1283–1288 (2010).
[Crossref] [PubMed]

2009 (1)

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

2007 (3)

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

R. W. Pridmore, “Chromatic luminance, colorimetric purity, and optimal aperture-color Stimuli,” Color Res. Appl. 32(6), 469–476 (2007).
[Crossref]

S. Y. Lu and L. C. Chien, “A polymer stabilized single layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

2006 (2)

1998 (1)

1995 (2)

N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
[Crossref]

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

1994 (1)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

1980 (1)

1978 (1)

I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).

1922 (1)

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).

Agez, G.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Arkhipkin, V. G.

Bae, K.-S.

Barberi, R.

Bisoyi, H. K.

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Broer, D. J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Bunning, T. J.

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Carbone, V.

N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
[Crossref]

Cha, U.

Chen, C. W.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Chen, F.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

Chen, R.

Y. Li, D. Luo, and R. Chen, “Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen,” IEEE Photonics J. 8(4), 1503206 (2016).

Chen, Y.

Y. Chen and S.-T. Wu, “Electric field-induced monodomain blue phase liquid crystals,” Appl. Phys. Lett. 102(17), 171110 (2013).
[Crossref]

Chien, L. C.

S. Y. Lu and L. C. Chien, “A polymer stabilized single layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Choi, H. C.

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Chu, C. L.

Ciuchi, F.

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

De Santo, M. P.

Dessaud, N.

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Devadze, L.

Doane, J. W.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Dong, X.

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

Doyle, C.

Elston, S. J.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
[Crossref]

Fan, B.

Fells, J. A. J.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
[Crossref]

Ferrero, C.

N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
[Crossref]

Friedel, G.

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).

Genack, A. Z.

Gunyakov, V. A.

Guo, D. Y.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Guo, J.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

Hamdi, R.

He, W.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

Hong, C. L.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Horng, C. T.

Hsiao, Y. C.

Hu, J.

Huang, C. Y.

Huang, S. Y.

Huang, Y.

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Hurtubise, J. M.

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Imrie, C. T.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Japaridze, K.

Jau, H. C.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Ji, N.

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

Kim, J.-H.

Kopp, V. I.

l’chishin, I. P

I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).

Lavrentovich, O. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Lee, C. R.

Lee, K. M.

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

Lee, T.

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

Lee, W.

Lee, Y.-J.

Li, C. C.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Li, Q.

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Li, R.

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

Li, Y.

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Y. Li, D. Luo, and R. Chen, “Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen,” IEEE Photonics J. 8(4), 1503206 (2016).

Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691–696 (2016).
[Crossref]

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Lin, H. Y.

Lin, J. D.

Lin, T. H.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Y. T. Lin and T. H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

Lin, Y. T.

Y. T. Lin and T. H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

Lu, H.

Lu, S. Y.

S. Y. Lu and L. C. Chien, “A polymer stabilized single layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Lub, J.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Luo, D.

Y. Li, D. Luo, and R. Chen, “Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen,” IEEE Photonics J. 8(4), 1503206 (2016).

Y. Li and D. Luo, “Fabrication and application of 1D micro-cavity film made by cholesteric liquid crystal and reactive mesogen,” Opt. Mater. Express 6(2), 691–696 (2016).
[Crossref]

Lv, G.

Makow, D. M.

Matranga, M. A.

McConney, M. E.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Mitov, M.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Mo, T. S.

Mol, G. N.

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Moon, Y.-K.

Morris, S. M.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
[Crossref]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

Myslivets, S. A.

Natarajan, L. V.

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

Parshin, A. M.

Paterson, D. A.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Petriashvili, G.

Ponjavidze, N.

Pridmore, R. W.

R. W. Pridmore, “Chromatic luminance, colorimetric purity, and optimal aperture-color Stimuli,” Color Res. Appl. 32(6), 469–476 (2007).
[Crossref]

Qiu, L.

Relaix, S.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Scaramuzza, N.

N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
[Crossref]

Sepashvili, N.

Shabanov, V. F.

Shpak, M

I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).

Smalyukh, I. I.

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

Song, Z.

Storey, J. M. D.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Tikhonov, E.A

I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).

Tishchenko, V. G

I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).

Tondiglia, V. P.

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Versace, C.

N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
[Crossref]

Vithana, H. K. M.

Wang, C. T.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Wang, L.

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Wang, X.

Wei, J.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

White, T. J.

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Wood, S. M.

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
[Crossref]

Wu, H.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

Wu, S. T.

Wu, S.-T.

Y. Chen and S.-T. Wu, “Electric field-induced monodomain blue phase liquid crystals,” Appl. Phys. Lett. 102(17), 171110 (2013).
[Crossref]

Xiang, J.

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

Xu, W.

Yang, D.-K.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

Yang, H.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

You, B.

Yu, C.-J.

Yu, L. C.

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Zhang, G.

Zhang, L.

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

Zhang, S.

Zheng, Z. G.

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Zhou, Y.

Zurabishvili, C.

Zyryanov, V. Y.

ACS Photonics (2)

K. M. Lee, V. P. Tondiglia, M. E. McConney, L. V. Natarajan, T. J. Bunning, and T. J. White, “Color-tunable mirrors based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystals,” ACS Photonics 1(10), 1033–1041 (2014).
[Crossref]

C. W. Chen, C. C. Li, H. C. Jau, L. C. Yu, C. L. Hong, D. Y. Guo, C. T. Wang, and T. H. Lin, “Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals,” ACS Photonics 2(11), 1524–1531 (2015).
[Crossref]

Adv. Mater. (4)

J. Xiang, Y. Li, Q. Li, D. A. Paterson, J. M. D. Storey, C. T. Imrie, and O. D. Lavrentovich, “Electrically tunable selective reflection of light from ultraviolet to visible and infrared by heliconical cholesterics,” Adv. Mater. 27(19), 3014–3018 (2015).
[Crossref] [PubMed]

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, L. V. Natarajan, T. J. White, and T. J. Bunning, “Thermally induced, multicolored hyper-reflective cholesteric liquid crystals,” Adv. Mater. 23(12), 1453–1457 (2011).
[Crossref] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Simultaneous red-green-blue reflection and wavelength tuning from an achiral liquid crystal and a polymer template,” Adv. Mater. 22(1), 53–56 (2010).
[Crossref] [PubMed]

M. Mitov, “Cholesteric liquid crystals with a broad light reflection band,” Adv. Mater. 24(47), 6260–6276 (2012).
[Crossref] [PubMed]

Ann. Phys. (1)

G. Friedel, “The mesomorphic states of matter,” Ann. Phys. 18, 273–474 (1922).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Y. Lu and L. C. Chien, “A polymer stabilized single layer color cholesteric liquid crystal display with anisotropic reflection,” Appl. Phys. Lett. 91(13), 131119 (2007).
[Crossref]

Y. Chen and S.-T. Wu, “Electric field-induced monodomain blue phase liquid crystals,” Appl. Phys. Lett. 102(17), 171110 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

M. E. McConney, V. P. Tondiglia, J. M. Hurtubise, T. J. White, and T. J. Bunning, “Photoinduced hyper-reflective cholesteric liquid crystals enabled via surface initiated photopolymerization,” Chem. Commun. (Camb.) 47(1), 505–507 (2011).
[Crossref] [PubMed]

Color Res. Appl. (1)

R. W. Pridmore, “Chromatic luminance, colorimetric purity, and optimal aperture-color Stimuli,” Color Res. Appl. 32(6), 469–476 (2007).
[Crossref]

IEEE Photonics J. (1)

Y. Li, D. Luo, and R. Chen, “Microcavity laser based on cholesteric liquid crystal doped with reactive mesogen,” IEEE Photonics J. 8(4), 1503206 (2016).

J. Appl. Phys. (2)

N. Scaramuzza, C. Ferrero, V. Carbone, and C. Versace, “Dynamics of selective reflections of cholesteric liquid crystals subject to electric fields,” J. Appl. Phys. 77(2), 572–576 (1995).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in display using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

J. Disp. Technol. (1)

Y. T. Lin and T. H. Lin, “Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films,” J. Disp. Technol. 7(7), 373–376 (2011).
[Crossref]

J. Mater. Chem. (1)

J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang, and J. Wei, “Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure,” J. Mater. Chem. 20(20), 4094–4102 (2010).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

K. M. Lee, V. P. Tondiglia, T. Lee, I. I. Smalyukh, and T. J. White, “Large range electrically-induced reflection notch tuning in polymer stabilized cholesteric liquid crystals,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(34), 8788–8793 (2015).
[Crossref]

J. Phys. Chem. C (1)

J. Guo, H. Yang, R. Li, N. Ji, X. Dong, H. Wu, and J. Wei, “Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band,” J. Phys. Chem. C 113(37), 16538–16543 (2009).
[Crossref]

JETP Lett. (1)

I. P l’chishin, E.A Tikhonov, V. G Tishchenko, and M Shpak, “Generation of a tunable radiation by impurity cholesteric liquid crystals,” JETP Lett. 32(1), 24–27 (1978).

Liq. Cryst. (1)

M. Mitov and N. Dessaud, “Cholesteric liquid crystalline materials reflecting more than 50% of unpolarized incident light intensity,” Liq. Cryst. 34(2), 183–193 (2007).
[Crossref]

Macromolecules (1)

S. M. Wood, J. A. J. Fells, S. J. Elston, and S. M. Morris, “Wavelength tuning of the photonic band gap of an achiral nematic liquid crystal filled into a chiral polymer scaffold,” Macromolecules 49(22), 8643–8652 (2016).
[Crossref]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater. 5(5), 361–364 (2006).
[Crossref] [PubMed]

Nature (2)

D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature 378(6556), 467–469 (1995).
[Crossref]

Z. G. Zheng, Y. Li, H. K. Bisoyi, L. Wang, T. J. Bunning, and Q. Li, “Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light,” Nature 531(7594), 352–356 (2016).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Other (2)

S.-T. Wu and D.-k. Yang, “Reflective liquid crystal displays,” Wiley, West Sussex, UK (2001).

A. K. R. Choudhury, Principles of Colour and Appearance Measurement: Visual Measurement of Colour, Colour Comparison and Management (Woodhead Publishing, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fabrication process of cholesteric liquid crystal film. (I) Mixing process, (II) sample exposed in an UV light, (III) sample immersed in toluene for one day to soak out CLC molecules and unpolymerized RM monomers, resulting polymer scaffold, and (IV) sample refilled with material.
Fig. 2
Fig. 2 Reflectance of CLCF at (a) blue, (b) green, and (c) red color. (d) Color gamut of sample refilled with different liquid crystals on the CIE 1931 chromaticity diagram.
Fig. 3
Fig. 3 (a) Temperature effect on: (a) center wavelength and (b) bandgap in reflection spectrum of samples C1~C3.
Fig. 4
Fig. 4 Reflection spectrum of CLCF samples at (a) blue color, D1; (b) green color, D2; and (c) red color, D3. (d) The refractive index of the empty polymer film and toluene at different wavelengths. The solid curves represent the fit data.
Fig. 5
Fig. 5 (a) Schematic diagram of reflective display consisting of a dark layer, reflective layer, driven layer and parallel polarizers. 2-inch device of reflective display operated at the (b) blue color (c) green color and (d) red color. The external electric field was applied in the “SUSTec” parts. (e) The red, green and blue films were deposited on a flexible substrate; this device can be used as reflective layer for flexible display.
Fig. 6
Fig. 6 (a) Variations in reflectance of the display under cross-polarizers as a function of the applied AC voltage. (b) Dynamic reflectance (response) of the display applied with an AC voltage of 12 V, where the τon and τoff were 11.8 ms and 43.3 ms, respectively.

Tables (1)

Tables Icon

Table 1 The composition of samples

Metrics