K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref]
[PubMed]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]
F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]
V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]
B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]
J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]
N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref]
[PubMed]
V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]
S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]
A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
[Crossref]
[PubMed]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]
J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]
B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]
F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref]
[PubMed]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref]
[PubMed]
N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]
M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]
T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref]
[PubMed]
C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref]
[PubMed]
F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]
M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref]
[PubMed]
J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]
S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]
R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
[Crossref]
M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]
S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]
P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]
J.-M. Herrmann, “Photocatalysis fundamentals revisited to avoid several misconceptions,” Appl. Catal. B 99(3-4), 461–468 (2010).
[Crossref]
D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]
L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]
M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]
D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref]
[PubMed]
J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref]
[PubMed]
L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]
C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]
C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]
V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref]
[PubMed]
M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
[Crossref]
N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]
T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref]
[PubMed]
L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]
S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]
N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]
S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]
M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
[Crossref]
N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]
L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]
M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref]
[PubMed]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]
C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]
M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref]
[PubMed]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]
F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref]
[PubMed]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]
X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]
D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref]
[PubMed]
C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]
F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]
A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
[Crossref]
[PubMed]
N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]
S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]
M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
[Crossref]
S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]
J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]
J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]
V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]
S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]
N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref]
[PubMed]
P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]
S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]
B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]
N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref]
[PubMed]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
E. Pelizzetti, “Concluding remarks on heterogeneous solar photocatalysis,” Sol. Energy Mater. Sol. Cells 38(1-4), 453–457 (1995).
[Crossref]
L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]
J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]
F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref]
[PubMed]
D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]
X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]
N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref]
[PubMed]
M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref]
[PubMed]
S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]
N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]
P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]
Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]
D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]
M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]
M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]
S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]
M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref]
[PubMed]
R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
[Crossref]
M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref]
[PubMed]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]
V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref]
[PubMed]
R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]
Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref]
[PubMed]
S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]
M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]
T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]
J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]
S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]
B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]
B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]
J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]
M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref]
[PubMed]
V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]
T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]
T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]
C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]
D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref]
[PubMed]
X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]
F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref]
[PubMed]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref]
[PubMed]
D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref]
[PubMed]
X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]
L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]
D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref]
[PubMed]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]
C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref]
[PubMed]
C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref]
[PubMed]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]
L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]
K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref]
[PubMed]
M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]
B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]
H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref]
[PubMed]
J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref]
[PubMed]
C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]
X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref]
[PubMed]
D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref]
[PubMed]
C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]
D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref]
[PubMed]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]
R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
[Crossref]
Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref]
[PubMed]