Abstract

Although several groups have reported the synthesis of ZnS quantum dots, only a few have developed methods to prepare potentially nontoxic, noble metal loaded ZnS QDs. In this study, we devised a gram scale, environmentally benign, room temperature, aqueous solution based method for the synthesis of renewable and eco-friendly, well dispersed ZnS quantum dots along with noble metal loaded ZnS QDs (loading amount 4 wt%). The properties of the nanophotocatalysts were determined by using XRD, XPS, TEM and SEM techniques. The ZnS QDs were found to have small sizes of ca. 4.5 nm and to display quantum effects in terms of blue shifts in their absorption maxima associated with an optical band gap, Eg, of 4.63 eV. The photocatalytic activities of ZnS QDs, Au/ZnS and Ag/ZnS were assessed using photodegradation of methylene blue. The results demonstrate that a significant increase in the photocatalytic efficiency takes place upon the loading of Ag and Au nanoparticles on ZnS QDs. An in-depth investigation was carried out to uncover information about the effects of noble metals on band gap energies and surface charges of the QDs. Finally, a new surface reactivation procedure was developed for the reactivation of nanophotocatalysts. Consequently, the newly synthesized photocatalysts are renewable, a property that should make their use in practical applications cost effective.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nano-heterostructured photo-stable CdxZn1−xS heterojunction as a non-photocorrosive visible light active photocatalyst

Metwally Madkour, Tasneem Salih, Fakhreia Al-Sagheer, and Ali Bumajdad
Opt. Mater. Express 6(9) 2857-2870 (2016)

One-step electrochemical synthesis of graphene oxide-TiO2 nanotubes for improved visible light activity

Imran Ali, Seu-Run Kim, Kyungmin Park, and Jong-Oh Kim
Opt. Mater. Express 7(5) 1535-1546 (2017)

Fabrication of plasmonic Au/TiO2 nanofiber films with enhanced photocatalytic activities

Hua Li, Enzhou Liu, Jun Fan, Xiaoyun Hu, Jun Wan, Lin Sun, and Yang Hu
Appl. Opt. 55(2) 221-227 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
    [Crossref]
  2. N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
    [Crossref] [PubMed]
  3. J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
    [Crossref]
  4. J.-M. Herrmann, “Photocatalysis fundamentals revisited to avoid several misconceptions,” Appl. Catal. B 99(3-4), 461–468 (2010).
    [Crossref]
  5. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
    [Crossref]
  6. E. Pelizzetti, “Concluding remarks on heterogeneous solar photocatalysis,” Sol. Energy Mater. Sol. Cells 38(1-4), 453–457 (1995).
    [Crossref]
  7. M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
    [Crossref]
  8. F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
    [Crossref] [PubMed]
  9. C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
    [Crossref]
  10. J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
    [Crossref] [PubMed]
  11. S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
    [Crossref]
  12. S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
    [Crossref]
  13. M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
    [Crossref]
  14. D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
    [Crossref] [PubMed]
  15. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
    [Crossref] [PubMed]
  16. C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
    [Crossref]
  17. N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
    [Crossref]
  18. F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
    [Crossref]
  19. D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
    [Crossref]
  20. X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
    [Crossref]
  21. M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
    [Crossref]
  22. M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
    [Crossref]
  23. B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
    [Crossref]
  24. S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
    [Crossref]
  25. M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
    [Crossref]
  26. D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
    [Crossref] [PubMed]
  27. R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
    [Crossref]
  28. C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
    [Crossref]
  29. N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
    [Crossref]
  30. L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
    [Crossref]
  31. Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
    [Crossref]
  32. M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
    [Crossref]
  33. H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
    [Crossref] [PubMed]
  34. L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
    [Crossref]
  35. P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
    [Crossref]
  36. S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
    [Crossref]
  37. J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
    [Crossref]
  38. R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
    [Crossref]
  39. M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
    [Crossref] [PubMed]
  40. V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
    [Crossref]
  41. J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
    [Crossref]
  42. V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
    [Crossref] [PubMed]
  43. A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
    [Crossref] [PubMed]
  44. Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
    [Crossref] [PubMed]
  45. K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
    [Crossref] [PubMed]
  46. Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
    [Crossref] [PubMed]
  47. C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
    [Crossref]
  48. R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
    [Crossref]
  49. M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
    [Crossref] [PubMed]
  50. B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
    [Crossref]
  51. T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
    [Crossref]
  52. D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
    [Crossref] [PubMed]

2015 (4)

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

2014 (5)

R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
[Crossref]

A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
[Crossref] [PubMed]

C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

2013 (6)

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

2012 (5)

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref] [PubMed]

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

2011 (2)

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

2010 (6)

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]

M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
[Crossref]

A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
[Crossref]

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

J.-M. Herrmann, “Photocatalysis fundamentals revisited to avoid several misconceptions,” Appl. Catal. B 99(3-4), 461–468 (2010).
[Crossref]

2008 (4)

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]

2007 (1)

M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]

2006 (3)

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
[Crossref]

2005 (1)

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

2004 (4)

M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]

S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]

N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref] [PubMed]

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref] [PubMed]

2003 (2)

M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]

N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]

2002 (1)

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

2000 (4)

B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]

C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]

1998 (1)

M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref] [PubMed]

1997 (1)

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

1995 (1)

E. Pelizzetti, “Concluding remarks on heterogeneous solar photocatalysis,” Sol. Energy Mater. Sol. Cells 38(1-4), 453–457 (1995).
[Crossref]

1993 (1)

J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]

Acharya, K. P.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Acharya, S. A.

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

Agostini, G.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Ahmad, M.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Ahmadi, F.

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

Ait-Ichou, Y.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

Al-Sagheer, F.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Amal, R.

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

Anderson, M. A.

B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]

Aramendía, M. A.

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

Behnajady, M. A.

N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref] [PubMed]

Beydoun, D.

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

Bigall, N. C.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Bonino, F.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Bordiga, S.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Bumajdad, A.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
[Crossref] [PubMed]

Byrne, J. A.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Candal, R.

B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]

Cesano, F.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Cesteros, Y.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Chan, C.-C.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chan, T.-S.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chang, C.-C.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, C.-L.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, D.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Chen, F.

B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]

Chen, G.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

Chen, H. M.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, Q.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

Chen, S.-Y.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Chen, X.

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

Chen, Z.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Chimentão, R. J.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Cho, E.

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Colmenares, J. C.

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

Corn, R. M.

B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]

Cowan, A. J.

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

Dai, Y.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Daneshvar, N.

N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref] [PubMed]

N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]

de Lasa, H. I.

M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]

Dékány, I.

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Diederich, G.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Dionysiou, D. D.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Dong, C.-L.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Dongare, M. K.

R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
[Crossref]

Dunlop, P. S. M.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Edwards, P. P.

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

Entezari, M. H.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Falaras, P.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Fan, B.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Feldhoff, A.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Feng, Y.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

Fernández, A.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

Fierro, J. L. G.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Fu, X.

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

Galindo, C.

C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]

Gao, J.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Gao, L.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Ghaedi, M.

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

Ghazal, B.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

González-Elipe, A. R.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

Goodman, D. W.

M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref] [PubMed]

Grätzel, M.

J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]

Guo, L.

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

Guzman, M. I.

R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
[Crossref]

Ha, C.-S.

M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]

Hamilton, J. W. J.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Han, C.

C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]

Han, X. W.

S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]

Han, Z.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

Hashemi, F.

P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]

He, F.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

Herrmann, J. M.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

Herrmann, J.-M.

J.-M. Herrmann, “Photocatalysis fundamentals revisited to avoid several misconceptions,” Appl. Catal. B 99(3-4), 461–468 (2010).
[Crossref]

Hinder, S. J.

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

Hou, L.-R.

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

Hsu, Y.-Y.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Hu, J.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Huang, B.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Huang, F.

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Hung, S.-F.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Hussain, M.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Hussain, S. Z.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Imboden, M.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Iqbal, M.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Jacques, P.

C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]

Jakob, M.

M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]

Jia, L.

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

Jiang, J.

J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref] [PubMed]

Jiang, Z.

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

Juang, L.-C.

C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]

Kalt, A.

C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]

Kamat, P. V.

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref] [PubMed]

M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]

Karim, S.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Kasiri, M. B.

A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
[Crossref]

Khan, M.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Khan, S. D.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Khataee, A. R.

A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
[Crossref]

N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]

Khim, J.

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Khnayzer, R. S.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Kim, I.

M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]

Kinder, E.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Kirm, I.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Kirsanova, M.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Kiwi, J.

J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]

Klinkova, A.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Klug, D. R.

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

Kong, L.

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

Kontos, A. G.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Kronawitter, C. X.

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

Kshirsagar, A.

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]

Kulkarni, S. K.

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

Kumar, L.

M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
[Crossref]

Kumbhojkar, N.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]

Lai, H. H. C.

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

Lai, X.

M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref] [PubMed]

Lassaletta, G.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

Lee, C.-K.

C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]

Levanon, H.

M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]

Li, D.

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Li, H.

J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref] [PubMed]

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Li, J.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Li, S.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Li, T.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Li, X.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

Li, Y.

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

Lin, Z.

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Liu, J.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Liu, S. X.

S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]

Liu, X.

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

Liu, Y.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Low, G.

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

Lu, L.-Q.

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

Lyu, M.-D.

C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]

Madkour, M.

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
[Crossref] [PubMed]

Mahamuni, S.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]

Maheshwari, N.

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

Mall, M.

M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
[Crossref]

Mao, S. S.

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

Marinas, A.

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

Marinas, J. M.

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

McEvoy, S.

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

Medina, F.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Michlits, G.

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

Miethe, J. F.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Modirshahla, N.

N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref] [PubMed]

Moshfegh, A. Z.

P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]

Naskar, S.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Nelson, B. P.

B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]

Nikesh, V. V.

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]

Nisar, A.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Nolan, N. T.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

O’Connor, T.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

O’Shea, K.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Pan, X.

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

Pelaez, M.

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Pelizzetti, E.

E. Pelizzetti, “Concluding remarks on heterogeneous solar photocatalysis,” Sol. Energy Mater. Sol. Cells 38(1-4), 453–457 (1995).
[Crossref]

Peng, Y.

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

Peringer, P.

J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]

Pesci, F. M.

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

Pillai, S. C.

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Pulgarin, C.

J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]

Qian, Q.

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

Qin, X.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Qu, Z. P.

S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]

Rabbani, M.

N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref] [PubMed]

Rajabi, H. R.

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

Ren, F.

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

Ren, G.

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Rodríguez, X.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Roth, D.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Salagre, P.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Salaices, M.

M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]

Salari, D.

N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]

Sangpour, P.

P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]

Scarano, D.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Schlosser, A.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Schoonen, M. A. A.

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Seery, M. K.

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Serrano, B.

M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]

Shen, S.

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

Shokrollahi, A.

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

Sonawane, R. S.

R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
[Crossref]

Soylak, M.

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

Spoto, G.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Steinbach, F.

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Subramanian, V.

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref] [PubMed]

Sueiras, J. E.

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

Suen, N.-T.

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Sun, C. L.

S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]

Sun, H.

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Sun, J.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Synnott, D. W.

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

Szabó, T.

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Tahiri, H.

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

Tatikondewar, L.

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

Tian, B.

B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]

Tong, T.

B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]

Uddin, M. J.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Ullah, M. H.

M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]

Urbano, F. J.

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

Valden, M.

M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref] [PubMed]

Vamathevan, V.

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

Varga, N.

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Veres, Á.

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Wang, C.-C.

C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]

Wang, D.-H.

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

Wang, F.

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

Wang, G.

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

Wang, H.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Wang, X.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Wang, Y.

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Wang, Z.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Wolf, E. E.

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref] [PubMed]

Wu, X.-L.

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

Xiao, L.

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

Xiao, T.

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

Xu, A.-W.

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

Xu, C.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Xu, Y.

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Xu, Y.-J.

C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

Yang, M.-Q.

C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

Yu, Y.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

Yuan, C.-Z.

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

Zamkov, M.

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Zecchina, A.

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

Zhang, J.

B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]

Zhang, L.

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref] [PubMed]

Zhang, N.

C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

Zhang, R.

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

Zhang, X.

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Zheng, M.

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

Zheng, Y.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

Zhou, R.

R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
[Crossref]

Zhou, Y.

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Y.-Y. Hsu, N.-T. Suen, C.-C. Chang, S.-F. Hung, C.-L. Chen, T.-S. Chan, C.-L. Dong, C.-C. Chan, S.-Y. Chen, and H. M. Chen, “Heterojunction of Zinc Blende/Wurtzite in Zn1-xCdxS Solid Solution for Efficient Solar Hydrogen Generation: X-ray Absorption/Diffraction Approaches,” ACS Appl. Mater. Interfaces 7(40), 22558–22569 (2015).
[Crossref] [PubMed]

Am. Mineral. (1)

Y. Xu and M. A. A. Schoonen, “The absolute energy positions of conduction and valence bands of selected semiconducting minerals,” Am. Mineral. 85(3-4), 543–556 (2000).
[Crossref]

Appl. Catal. A (1)

J. C. Colmenares, M. A. Aramendía, A. Marinas, J. M. Marinas, and F. J. Urbano, “Synthesis, characterization and photocatalytic activity of different metal-deposited titania systems,” Appl. Catal. A 306, 120–127 (2006).
[Crossref]

Appl. Catal. B (6)

J. M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. R. González-Elipe, and A. Fernández, “Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz,” Appl. Catal. B 13(3-4), 219–228 (1997).
[Crossref]

D. W. Synnott, M. K. Seery, S. J. Hinder, G. Michlits, and S. C. Pillai, “Anti-bacterial activity of indoor-light activated photocatalysts,” Appl. Catal. B 130–131, 106–111 (2013).
[Crossref]

B. Tian, J. Zhang, T. Tong, and F. Chen, “Preparation of Au/TiO2 catalysts from Au(I)–thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange,” Appl. Catal. B 79(4), 394–401 (2008).
[Crossref]

J. Kiwi, C. Pulgarin, P. Peringer, and M. Grätzel, “Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment,” Appl. Catal. B 3(1), 85–99 (1993).
[Crossref]

J.-M. Herrmann, “Photocatalysis fundamentals revisited to avoid several misconceptions,” Appl. Catal. B 99(3-4), 461–468 (2010).
[Crossref]

M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B 125, 331–349 (2012).
[Crossref]

Appl. Surf. Sci. (2)

R. J. Chimentão, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. E. Sueiras, and J. L. G. Fierro, “Sensitivity of styrene oxidation reaction to the catalyst structure of silver nanoparticles,” Appl. Surf. Sci. 252(3), 793–800 (2005).
[Crossref]

C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang, and Y. Dai, “Preparation, characterization, and photocatalytic properties of silver carbonate,” Appl. Surf. Sci. 257(20), 8732–8736 (2011).
[Crossref]

Catal. Today (1)

S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today 93–95, 877–884 (2004).
[Crossref]

Chem. Eng. Sci. (1)

M. Salaices, B. Serrano, and H. I. de Lasa, “Photocatalytic conversion of phenolic compounds in slurry reactors,” Chem. Eng. Sci. 59(1), 3–15 (2004).
[Crossref]

Chem. Mater. (1)

S. Naskar, A. Schlosser, J. F. Miethe, F. Steinbach, A. Feldhoff, and N. C. Bigall, “Site-Selective Noble Metal Growth on CdSe Nanoplatelets,” Chem. Mater. 27(8), 3159–3166 (2015).
[Crossref]

Chem. Soc. Rev. (1)

H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem. Soc. Rev. 43(15), 5234–5244 (2014).
[Crossref] [PubMed]

Chemistry (1)

J. Jiang, H. Li, and L. Zhang, “New Insight into Daylight Photocatalysis of AgBr@Ag: Synergistic Effect between Semiconductor Photocatalysis and Plasmonic Photocatalysis,” Chemistry 18(20), 6360–6369 (2012).
[Crossref] [PubMed]

Chemosphere (1)

N. Daneshvar, M. Rabbani, N. Modirshahla, and M. A. Behnajady, “Critical effect of hydrogen peroxide concentration in photochemical oxidative degradation of C.I. Acid Red 27 (AR27),” Chemosphere 56(10), 895–900 (2004).
[Crossref] [PubMed]

Colloids Surf. A Physicochem. Eng. Asp. (1)

T. Szabó, Á. Veres, E. Cho, J. Khim, N. Varga, and I. Dékány, “Photocatalyst separation from aqueous dispersion using graphene oxide/TiO2 nanocomposites,” Colloids Surf. A Physicochem. Eng. Asp. 433, 230–239 (2013).
[Crossref]

Cryst. Growth Des. (1)

S. A. Acharya, N. Maheshwari, L. Tatikondewar, A. Kshirsagar, and S. K. Kulkarni, “Ethylenediamine-Mediated Wurtzite Phase Formation in ZnS,” Cryst. Growth Des. 13(4), 1369–1376 (2013).
[Crossref]

Dyes Pigments (1)

C.-C. Wang, C.-K. Lee, M.-D. Lyu, and L.-C. Juang, “Photocatalytic degradation of C.I. Basic Violet 10 using TiO2 catalysts supported by Y zeolite: An investigation of the effects of operational parameters,” Dyes Pigments 76(3), 817–824 (2008).
[Crossref]

Int. J. Green Nanotechnol.: Mater. Sci. Eng. (1)

S. Shen, L. Guo, X. Chen, F. Ren, C. X. Kronawitter, and S. S. Mao, “Effect of Noble Metal in CdS/M/TiO2 for Photocatalytic Degradation of Methylene Blue under Visible Light,” Int. J. Green Nanotechnol.: Mater. Sci. Eng. 1(2), M94–M104 (2010).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

F. M. Pesci, G. Wang, D. R. Klug, Y. Li, and A. J. Cowan, “Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting,” J Phys Chem C Nanomater Interfaces 117(48), 25837–25844 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration,” J. Am. Chem. Soc. 126(15), 4943–4950 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, and S. Mahamuni, “Photophysical properties of ZnS nanoclusters,’,” J. Appl. Phys. 88(11), 6260 (2000).
[Crossref]

J. Hazard. Mater. (1)

M. Ghaedi, A. Shokrollahi, F. Ahmadi, H. R. Rajabi, and M. Soylak, “Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry,” J. Hazard. Mater. 150(3), 533–540 (2008).
[Crossref] [PubMed]

J. Lumin. (1)

M. Mall and L. Kumar, “Optical studies of Cd2+ and Mn2+ Co-deposited ZnS nanocrystals,” J. Lumin. 130(4), 660–665 (2010).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

C. Han, M.-Q. Yang, N. Zhang, and Y.-J. Xu, “Enhancing the visible light photocatalytic performance of ternary CdS-(graphene-Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy‎,” J. Mater. Chem. A Mater. Energy Sustain. 2(45), 19156–19166 (2014).
[Crossref]

J. Mol. Catal. Chem. (3)

A. R. Khataee and M. B. Kasiri, “Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes,” J. Mol. Catal. Chem. 328(1-2), 8–26 (2010).
[Crossref]

L.-R. Hou, C.-Z. Yuan, and Y. Peng, “Preparation and photocatalytic property of sunlight-driven photocatalyst Bi38ZnO58,” J. Mol. Catal. Chem. 252(1-2), 132–135 (2006).
[Crossref]

R. S. Sonawane and M. K. Dongare, “Sol–gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight,” J. Mol. Catal. Chem. 243(1), 68–76 (2006).
[Crossref]

J. Photochem. Photobiol. Chem. (4)

V. Vamathevan, R. Amal, D. Beydoun, G. Low, and S. McEvoy, “Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,” J. Photochem. Photobiol. Chem. 148(1-3), 233–245 (2002).
[Crossref]

M. J. Uddin, F. Cesano, D. Scarano, F. Bonino, G. Agostini, G. Spoto, S. Bordiga, and A. Zecchina, “Cotton textile fibres coated by Au/TiO2 films: Synthesis, characterization and self-cleaning properties,” J. Photochem. Photobiol. Chem. 199(1), 64–72 (2008).
[Crossref]

C. Galindo, P. Jacques, and A. Kalt, “Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H2O2, UV/TiO2 and VIS/TiO2: Comparative mechanistic and kinetic investigations,” J. Photochem. Photobiol. Chem. 130(1), 35–47 (2000).
[Crossref]

N. Daneshvar, D. Salari, and A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters,” J. Photochem. Photobiol. Chem. 157(1), 111–116 (2003).
[Crossref]

J. Phys. Chem. C (2)

R. Zhou and M. I. Guzman, “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C 118(22), 11649–11656 (2014).
[Crossref]

P. Sangpour, F. Hashemi, and A. Z. Moshfegh, “Photoenhanced Degradation of Methylene Blue on Cosputtered M:TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study,” J. Phys. Chem. C 114(33), 13955–13961 (2010).
[Crossref]

Langmuir (1)

B. P. Nelson, R. Candal, R. M. Corn, and M. A. Anderson, “Control of Surface and ζ Potentials on Nanoporous TiO2 Films by Potential-Determining and Specifically Adsorbed Ions,” Langmuir 16(15), 6094–6101 (2000).
[Crossref]

Mater. Lett. (2)

X. Li, F. Wang, Q. Qian, X. Liu, L. Xiao, and Q. Chen, “Ag/TiO2 nanofibers heterostructure with enhanced photocatalytic activity for parathion,” Mater. Lett. 66(1), 370–373 (2012).
[Crossref]

M. H. Ullah, I. Kim, and C.-S. Ha, “pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence,” Mater. Lett. 61(21), 4267–4271 (2007).
[Crossref]

Nano Lett. (2)

M. Jakob, H. Levanon, and P. V. Kamat, “Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level,” Nano Lett. 3(3), 353–358 (2003).
[Crossref]

K. P. Acharya, R. S. Khnayzer, T. O’Connor, G. Diederich, M. Kirsanova, A. Klinkova, D. Roth, E. Kinder, M. Imboden, and M. Zamkov, “The role of hole localization in sacrificial hydrogen production by semiconductor-metal heterostructured nanocrystals,” Nano Lett. 11(7), 2919–2926 (2011).
[Crossref] [PubMed]

Nanoscale (4)

D. Chen, F. Huang, G. Ren, D. Li, M. Zheng, Y. Wang, and Z. Lin, “ZnS nano-architectures: photocatalysis, deactivation and regeneration,” Nanoscale 2(10), 2062–2064 (2010).
[Crossref] [PubMed]

D.-H. Wang, L. Jia, X.-L. Wu, L.-Q. Lu, and A.-W. Xu, “One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity,” Nanoscale 4(2), 576–584 (2012).
[Crossref] [PubMed]

X. Pan, M.-Q. Yang, X. Fu, N. Zhang, and Y.-J. Xu, “Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications,” Nanoscale 5(9), 3601–3614 (2013).
[Crossref] [PubMed]

D. Chen, T. Li, Q. Chen, J. Gao, B. Fan, J. Li, X. Li, R. Zhang, J. Sun, and L. Gao, “Hierarchically plasmonic photocatalysts of Ag/AgCl nanocrystals coupled with single-crystalline WO3 nanoplates,” Nanoscale 4(17), 5431–5439 (2012).
[Crossref] [PubMed]

New J. Chem. (1)

M. Hussain, M. Ahmad, A. Nisar, H. Sun, S. Karim, M. Khan, S. D. Khan, M. Iqbal, and S. Z. Hussain, “Enhanced photocatalytic and electrochemical properties of Au nanoparticles supported TiO2 microspheres,” New J. Chem. 38(4), 1424–1432 (2014).
[Crossref]

Phys. Chem. Chem. Phys. (2)

Y. Zhou, G. Chen, Y. Yu, Y. Feng, Y. Zheng, F. He, and Z. Han, “An efficient method to enhance the stability of sulphide semiconductor photocatalysts: a case study of N-doped ZnS,” Phys. Chem. Chem. Phys. 17(3), 1870–1876 (2015).
[Crossref] [PubMed]

A. Bumajdad and M. Madkour, “Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation,” Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014).
[Crossref] [PubMed]

Progress in Natural Science: Materials International (1)

L. Kong, Z. Jiang, H. H. C. Lai, T. Xiao, and P. P. Edwards, “Does noble metal modification improve the photocatalytic activity of BiOCl?” Progress in Natural Science: Materials International 23(3), 286–293 (2013).
[Crossref]

Sci. Adv. Mater. (1)

F. Al-Sagheer, A. Bumajdad, M. Madkour, and B. Ghazal, “Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations,” Sci. Adv. Mater. 7(11), 2352–2360 (2015).
[Crossref]

Science (1)

M. Valden, X. Lai, and D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties,” Science 281(5383), 1647–1650 (1998).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

E. Pelizzetti, “Concluding remarks on heterogeneous solar photocatalysis,” Sol. Energy Mater. Sol. Cells 38(1-4), 453–457 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of ZnS, Au/ZnS and Ag/ZnS nanoparticles
Fig. 2
Fig. 2 TEM images of ZnS, Au/ZnS and Ag/ZnS nanoparticles and the corresponding particle size distributions. The scale bar is 50 nm.
Fig. 3
Fig. 3 Deconvoluted peaks in the X-Ray photoelectron spectra of Zn2p, S2p, Ag3d and Au4f
Fig. 4
Fig. 4 A) Absorption spectra of unloaded and noble metal loaded ZnS QDs. The inset is a diagram of band structures; B) Tauc plots to determine band gap energies.
Fig. 5
Fig. 5 UV-Vis absorption spectroscopic monitoring of photocatalytic degradation of MB dye using (A) ZnS QDs; (B) Au/ZnS and (C) Ag/ZnS. (D) Plots of ln Co/C versus time for photodegradation of MB.and (E) percent MB degradation versus time. (F) Effect of pH on the efficiency of photodegradation of MB using ZnS QDs.
Fig. 6
Fig. 6 Photocatalytic efficiencies of unloaded and noble metal loaded ZnS QDs following five repeated cycles and after regeneration (6th cycle).

Tables (1)

Tables Icon

Table 1 Optoelectronic properties of unloaded and noble metal loaded ZnS QDs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r( E QD ) =[ 0.32 2.9* ( E QD 3.49 ) 1|2 ]|2*( 3.50 E QD )

Metrics