Abstract

Multiplexed diffraction gratings were recorded in 300 μm thick layers of biophotopol photopolymer by using two peristrophic multiplexing schemes separately and in combination. In addition, it was shown that riboflavin may be used as polymer initiator in acrylamide photopolymer films and the holographic properties of these films such as diffraction efficiency and dynamic range were compared with those of the biophotopol photopolymer. A variable exposure scheduling method was adopted to store the gratings using a 488 nm Ar laser. Thirteen nearly uniform sinusoidal wave gratings could be recorded in a low toxicity recording medium with a variable exposure energy scheduling method. The diffraction efficiency and dynamic range obtained using the two multiplexing schemes were compared.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage

Elena Fernández, Manuel Ortuño, Sergi Gallego, Celia García, Augusto Beléndez, and Immaculada Pascual
Appl. Opt. 46(22) 5368-5373 (2007)

Silver-doped photopolymer media for holographic recording

V. Pramitha, K. P. Nimmi, N. V. Subramanyan, Rani Joseph, K. Sreekumar, and C. Sudha Kartha
Appl. Opt. 48(12) 2255-2261 (2009)

Multiplexed holographic data page storage on a polyvinyl alcohol/acrylamide photopolymer memory

Elena Fernández, Manuel Ortuño, Sergi Gallego, Andrés Márquez, Celia García, Augusto Beléndez, and Inmaculada Pascual
Appl. Opt. 47(25) 4448-4456 (2008)

References

  • View by:
  • |
  • |
  • |

  1. H. Ruan, “Recent advances in holographic data storage,” Front. Optoelectron. 7(4), 450–466 (2014).
    [Crossref]
  2. F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
    [Crossref] [PubMed]
  3. K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
    [Crossref]
  4. J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
    [Crossref] [PubMed]
  5. M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
    [Crossref]
  6. F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
    [Crossref]
  7. N. K. Mohan, Q. T. Islam, and P. K. Rastogi, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871–880 (2006).
    [Crossref]
  8. A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
    [Crossref]
  9. D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” J. Opt. 14(1), 015601 (2012).
    [Crossref]
  10. D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
    [Crossref] [PubMed]
  11. M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
    [Crossref]
  12. V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
    [Crossref]
  13. N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
    [Crossref] [PubMed]
  14. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.
  15. S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
    [Crossref]
  16. M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
    [Crossref]
  17. Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
    [Crossref]
  18. K. Osabe and H. Saito, “Stability of holographic gratings recorded on photopolymer films using acrylamide as monomer and N,N′-methylenebisacrylamide,” Proc. SPIE 9386, 93860Q (2015).
    [Crossref]
  19. F. Zhai, Y. Hao, and K. Yang, “Improving the holographic performance of photopolymers for holographic recording application,” Optik (Stuttg.) 126(23), 4304–4307 (2015).
    [Crossref]
  20. Y. Li, C. Wang, H. Li, X. Wang, J. Han, and M. Huang, “Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites,” Appl. Opt. 54(33), 9799–9802 (2015).
    [Crossref] [PubMed]
  21. S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
    [Crossref]
  22. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
    [Crossref]
  23. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  24. V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
    [Crossref]
  25. E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46(22), 5368–5373 (2007).
    [Crossref] [PubMed]
  26. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35(10), 2824–2829 (1996).
    [Crossref]
  27. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
    [Crossref] [PubMed]
  28. E. Fernández, R. Fuentes, M. Ortuño, A. Beléndez, and I. Pascual, “Holographic grating stability: influence of 4,4′-azobis (4-cyanopentanoic acid) on various spatial frequencies,” Appl. Opt. 52(25), 6322–6331 (2013).
    [Crossref] [PubMed]
  29. R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
    [Crossref]
  30. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
    [Crossref]

2016 (7)

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
[Crossref] [PubMed]

D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
[Crossref] [PubMed]

J. Marín-Sáez, J. Atencia, D. Chemisana, and M.-V. Collados, “Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications,” Opt. Express 24(6), A720–A730 (2016).
[Crossref] [PubMed]

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

2015 (3)

Y. Li, C. Wang, H. Li, X. Wang, J. Han, and M. Huang, “Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites,” Appl. Opt. 54(33), 9799–9802 (2015).
[Crossref] [PubMed]

K. Osabe and H. Saito, “Stability of holographic gratings recorded on photopolymer films using acrylamide as monomer and N,N′-methylenebisacrylamide,” Proc. SPIE 9386, 93860Q (2015).
[Crossref]

F. Zhai, Y. Hao, and K. Yang, “Improving the holographic performance of photopolymers for holographic recording application,” Optik (Stuttg.) 126(23), 4304–4307 (2015).
[Crossref]

2014 (3)

H. Ruan, “Recent advances in holographic data storage,” Front. Optoelectron. 7(4), 450–466 (2014).
[Crossref]

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

2013 (1)

2012 (2)

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” J. Opt. 14(1), 015601 (2012).
[Crossref]

2011 (2)

A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
[Crossref]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

2010 (1)

V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
[Crossref]

2008 (2)

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

2007 (2)

2006 (1)

N. K. Mohan, Q. T. Islam, and P. K. Rastogi, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871–880 (2006).
[Crossref]

2005 (1)

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

2003 (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

2001 (1)

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

1996 (1)

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35(10), 2824–2829 (1996).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Anderson, K.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Askham, F.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Atencia, J.

Ayres, M.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Bang, H.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Beléndez, A.

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

E. Fernández, R. Fuentes, M. Ortuño, A. Beléndez, and I. Pascual, “Holographic grating stability: influence of 4,4′-azobis (4-cyanopentanoic acid) on various spatial frequencies,” Appl. Opt. 52(25), 6322–6331 (2013).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[Crossref] [PubMed]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46(22), 5368–5373 (2007).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

Bestel, I.

N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
[Crossref] [PubMed]

Beztsinna, N.

N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
[Crossref] [PubMed]

Bruder, F.-K.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Chemisana, D.

Cody, D.

D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
[Crossref] [PubMed]

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” J. Opt. 14(1), 015601 (2012).
[Crossref]

Collados, M. V.

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

Collados, M.-V.

Colm, M.

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Curtis, K.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35(10), 2824–2829 (1996).
[Crossref]

Fäcke, T.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Fenoll, S.

Fernández, E.

Fernández, R.

Francés, J.

Fuentes, R.

Fuentes-Tapia, I.

A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
[Crossref]

Gallego, S.

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[Crossref] [PubMed]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46(22), 5368–5373 (2007).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

García, C.

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46(22), 5368–5373 (2007).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

Gleeson, M. R.

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Gribbin, S.

D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
[Crossref] [PubMed]

Guo, J.

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Hagen, R.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Han, J.

Hao, Y.

F. Zhai, Y. Hao, and K. Yang, “Improving the holographic performance of photopolymers for holographic recording application,” Optik (Stuttg.) 126(23), 4304–4307 (2015).
[Crossref]

Hernández-Garay, M. P.

A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
[Crossref]

Hönel, D.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Hosam, S.

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Huang, M.

Ibarra-Torres, J. C.

A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
[Crossref]

Islam, Q. T.

N. K. Mohan, Q. T. Islam, and P. K. Rastogi, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871–880 (2006).
[Crossref]

Izabela, N.

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Joseph, R.

V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
[Crossref]

Kartha, C. S.

V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
[Crossref]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Lawrence, J. R.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

Li, H.

Y. Li, C. Wang, H. Li, X. Wang, J. Han, and M. Huang, “Effect of incorporation of different modified Al2O3 nanoparticles on holographic characteristics of PVA/AA photopolymer composites,” Appl. Opt. 54(33), 9799–9802 (2015).
[Crossref] [PubMed]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Li, Y.

Marín-Sáez, J.

Márquez, A.

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

Mihaylova, E.

D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
[Crossref] [PubMed]

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” J. Opt. 14(1), 015601 (2012).
[Crossref]

Mohan, N. K.

N. K. Mohan, Q. T. Islam, and P. K. Rastogi, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871–880 (2006).
[Crossref]

Navarro-Fuster, V.

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

Naydenova, I.

D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
[Crossref] [PubMed]

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” J. Opt. 14(1), 015601 (2012).
[Crossref]

Neipp, C.

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

O’Neill, F. T.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

Olivares-Pérez, A.

A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
[Crossref]

Orselli, E.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Ortuño, M.

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

E. Fernández, R. Fuentes, M. Ortuño, A. Beléndez, and I. Pascual, “Holographic grating stability: influence of 4,4′-azobis (4-cyanopentanoic acid) on various spatial frequencies,” Appl. Opt. 52(25), 6322–6331 (2013).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[Crossref] [PubMed]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46(22), 5368–5373 (2007).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

Osabe, K.

K. Osabe and H. Saito, “Stability of holographic gratings recorded on photopolymer films using acrylamide as monomer and N,N′-methylenebisacrylamide,” Proc. SPIE 9386, 93860Q (2015).
[Crossref]

Pascual, I.

R. Fernández, S. Gallego, V. Navarro-Fuster, C. Neipp, J. Francés, S. Fenoll, I. Pascual, and A. Beléndez, “Dimensional changes in slanted diffraction gratings recorded in photopolymers,” Opt. Mater. Express 6(11), 3455–3468 (2016).
[Crossref]

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

E. Fernández, R. Fuentes, M. Ortuño, A. Beléndez, and I. Pascual, “Holographic grating stability: influence of 4,4′-azobis (4-cyanopentanoic acid) on various spatial frequencies,” Appl. Opt. 52(25), 6322–6331 (2013).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007).
[Crossref] [PubMed]

E. Fernández, M. Ortuño, S. Gallego, C. García, A. Beléndez, and I. Pascual, “Comparison of peristrophic multiplexing and a combination of angular and peristrophic holographic multiplexing in a thick PVA/acrylamide photopolymer for data storage,” Appl. Opt. 46(22), 5368–5373 (2007).
[Crossref] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

Pramitha, V.

V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
[Crossref]

Psaltis, D.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35(10), 2824–2829 (1996).
[Crossref]

Pu, A.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35(10), 2824–2829 (1996).
[Crossref]

Qi, Y.

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Rastogi, P. K.

N. K. Mohan, Q. T. Islam, and P. K. Rastogi, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871–880 (2006).
[Crossref]

Rewitz, C.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Rölle, T.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Ruan, H.

H. Ruan, “Recent advances in holographic data storage,” Front. Optoelectron. 7(4), 450–466 (2014).
[Crossref]

Saito, H.

K. Osabe and H. Saito, “Stability of holographic gratings recorded on photopolymer films using acrylamide as monomer and N,N′-methylenebisacrylamide,” Proc. SPIE 9386, 93860Q (2015).
[Crossref]

Sheridan, J. T.

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

Sissom, B.

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
[Crossref]

Solé, M.

N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
[Crossref] [PubMed]

Sreekumar, K.

V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
[Crossref]

Suzanne, M.

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Taib, N.

N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
[Crossref] [PubMed]

Vincent, T.

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Vukicevic, D.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Walze, G.

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Wang, C.

Wang, X.

Weiser, M.-S.

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Yang, K.

F. Zhai, Y. Hao, and K. Yang, “Improving the holographic performance of photopolymers for holographic recording application,” Optik (Stuttg.) 126(23), 4304–4307 (2015).
[Crossref]

Zhai, F.

F. Zhai, Y. Hao, and K. Yang, “Improving the holographic performance of photopolymers for holographic recording application,” Optik (Stuttg.) 126(23), 4304–4307 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (1)

D. Cody, S. Gribbin, E. Mihaylova, and I. Naydenova, “Low-Toxicity Photopolymer for Reflection Holography,” ACS Appl. Mater. Interfaces 8(28), 18481–18487 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

F.-K. Bruder, R. Hagen, T. Rölle, M.-S. Weiser, and T. Fäcke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem. Int. Ed. Engl. 50(20), 4552–4573 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Biomaterials (1)

N. Beztsinna, M. Solé, N. Taib, and I. Bestel, “Bioengineered riboflavin in nanotechnology,” Biomaterials 80, 121–133 (2016).
[Crossref] [PubMed]

Front. Optoelectron. (1)

H. Ruan, “Recent advances in holographic data storage,” Front. Optoelectron. 7(4), 450–466 (2014).
[Crossref]

J. Mod. Opt. (1)

V. Pramitha, R. Joseph, K. Sreekumar, and C. S. Kartha, “Peristrophic multiplexing studies in silver doped photopolymer film,” J. Mod. Opt. 57(10), 908–913 (2010).
[Crossref]

J. Opt. (1)

D. Cody, I. Naydenova, and E. Mihaylova, “New non-toxic holographic photopolymer material,” J. Opt. 14(1), 015601 (2012).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

S. Hosam, N. Izabela, M. Suzanne, M. Colm, and T. Vincent, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7(5), 255–260 (2005).
[Crossref]

Materials (Basel) (1)

M. Ortuño, S. Gallego, A. Márquez, C. Neipp, I. Pascual, and A. Beléndez, “Biophotopol: A Sustainable Photopolymer for Holographic Data Storage Applications,” Materials (Basel) 5(12), 772–783 (2012).
[Crossref]

Opt. Commun. (3)

S. Gallego, C. Neipp, M. Ortuño, E. Fernández, A. Beléndez, and I. Pascual, “Analysis of multiplexed holograms stored in a thick PVA/AA photopolymer,” Opt. Commun. 281(6), 1480–1485 (2008).
[Crossref]

M. Ortuño, A. Márquez, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “Hologram multiplexing in acrylamide hydrophilic photopolymers,” Opt. Commun. 281(6), 1354–1357 (2008).
[Crossref]

Y. Qi, H. Li, J. Guo, M. R. Gleeson, and J. T. Sheridan, “Material response of photopolymer containing four different photosensitizers,” Opt. Commun. 320, 114–124 (2014).
[Crossref]

Opt. Eng. (3)

A. Olivares-Pérez, M. P. Hernández-Garay, I. Fuentes-Tapia, and J. C. Ibarra-Torres, “Holograms in polyvinyl alcohol photosensitized with CuCl22H2O,” Opt. Eng. 50(6), 065801 (2011).
[Crossref]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35(10), 2824–2829 (1996).
[Crossref]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40(4), 533–539 (2001).
[Crossref]

Opt. Express (2)

Opt. Lasers Eng. (1)

N. K. Mohan, Q. T. Islam, and P. K. Rastogi, “Recent developments in holographic optical elements (HOEs),” Opt. Lasers Eng. 44, 871–880 (2006).
[Crossref]

Opt. Mater. (1)

V. Navarro-Fuster, M. Ortuño, S. Gallego, A. Márquez, A. Beléndez, and I. Pascual, “Biophotopol’s energetic sensitivity improved in 300 μm layers by tuning the recording wavelength,” Opt. Mater. 52, 111–115 (2016).
[Crossref]

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

F. Zhai, Y. Hao, and K. Yang, “Improving the holographic performance of photopolymers for holographic recording application,” Optik (Stuttg.) 126(23), 4304–4307 (2015).
[Crossref]

Proc. SPIE (3)

K. Anderson, M. Ayres, F. Askham, and B. Sissom, “Holographic data storage: Science fiction or science fact?” Proc. SPIE 9201, 920102 (2014).
[Crossref]

K. Osabe and H. Saito, “Stability of holographic gratings recorded on photopolymer films using acrylamide as monomer and N,N′-methylenebisacrylamide,” Proc. SPIE 9386, 93860Q (2015).
[Crossref]

F.-K. Bruder, H. Bang, T. Fäcke, R. Hagen, D. Hönel, E. Orselli, C. Rewitz, T. Rölle, D. Vukicevic, and G. Walze, “Precision holographic optical elements in Bayfol HX photopolymer,” Proc. SPIE 9771, 977103 (2016).
[Crossref]

Renew. Sustain. Energy Rev. (1)

M. V. Collados, D. Chemisana, and J. Atencia, “Holographic solar energy systems: The role of optical elements,” Renew. Sustain. Energy Rev. 59, 130–140 (2016).
[Crossref]

Other (1)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage, Springer Series in Optical Sciences (Springer, 2000), Vol. 76.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Scheme of the two independent multiplexing motions.
Fig. 2
Fig. 2 Transmittance spectra (T) of the unexposed RF (solid blue line) and YE (discontinuous red line) photopolymer dyes (a) and absorption coefficient spectra of RF (b).
Fig. 3
Fig. 3 Diffraction efficiency normalized to the incident intensity (DED/I) (a) and diffraction efficiency normalized to diffracted + transmitted intensities (DED/(D + T)) (b); DE (solid symbols) and DE + TE (hollow symbols) versus exposure energy (E) for both photopolymers (NaAO; blue and AA; red).
Fig. 4
Fig. 4 Diffraction efficiency normalized to the incident intensity (DED/I) (a) and diffraction efficiency normalized to diffracted plus transmitted intensities (DED/(D + T)) (b); DE (hollow symbols) versus angular scan around the first Bragg angle (θ1) for both photopolymers (NaAO; blue and AA; red). We have also included the fitting curves to the Kogelnik’s equation (Eq. (2)) for both photopolymers.
Fig. 5
Fig. 5 Diffraction efficiency (DE) versus angular scan (θ1) of thirteen angle-multiplexed volume holograms.
Fig. 6
Fig. 6 Diffraction efficiency (DE) versus angle of reconstruction Y axis (θ1) for a) AA and b) NaAO samples for different θ2 angles along the Z axis.
Fig. 7
Fig. 7 Grating diffraction efficiency (DE) versus Y and Z axes (θ1 and θ2, respectively).
Fig. 8
Fig. 8 Angular reconstruction of multiplexed gratings along the Y axis (θ1) at different times (t).
Fig. 9
Fig. 9 Maximum diffraction efficiency (DEm) versus reconstruction time (t) for each grating.
Fig. 10
Fig. 10 Angle shift of the maximum DE versus reconstruction time (t) for each grating.
Fig. 11
Fig. 11 Photograph of an uncured recorded sample with (a) one unslanted grating and (b) thirteen multiplexed gratings along the Y axis and a cured recorded sample with (c) one unslanted grating and (d) thirteen multiplexed gratings along the Z axis.

Tables (5)

Tables Icon

Table 1 Molarity composition of each photopolymer solution. PVA in percentage.

Tables Icon

Table 2 Main holographic parameters of the samples shown in Fig. 4.

Tables Icon

Table 3 Parameters for 13 multiplexed gratings recorded with an axis parallel to the sample for NaAO and AA samples.

Tables Icon

Table 4 Parameters for 13 multiplexed gratings recorded with the axis perpendicular to the sample for NaAO and AA samples.

Tables Icon

Table 5 Parameters of 20 multiplexed gratings recorded with a combination of perpendicular and parallel axes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M#= i=1 N D E i 1/2
DE=exp( α·d cosθ )· sin 2 ( π· n 1 ·d λ·cosθ )

Metrics