Abstract

In this paper, we propose peelable thin films containing crescent shaped split-ring resonators (SRRs) that can be utilized for the fabrication of three-dimensional (3D) metamaterials. The SRRs were two-dimensionally fabricated by nanosphere lithography with closely packed polystyrene nanospheres in a large area prepared by electrostatic adsorption. The SRR monolayer film, which had macroscopic dimensions of over 10 × 10 mm2 (area) and a thickness of about 230 nm, was then obtained by using a separation technique. Once the SRR monolayer films were fabricated, multi-layered metamaterials were obtained via repetition of a simple stacking procedure. In this case, we fabricated a 4-layered SRR film with the same relative orientation for each layer. In order to investigate the optical characteristics of these multi-layered SRR films, transmission spectra for normal incident light were measured. The transmission spectra demonstrate that our multi-layered metamaterials operate in the near-infrared region.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of three dimensional split ring resonators by stress-driven assembly method

Che Chin Chen, Chih Ting Hsiao, Shulin Sun, Kuang-Yu Yang, Pin Chieh Wu, Wei Ting Chen, Yu Hsiang Tang, Yuan-Fong Chau, Eric Plum, Guang-Yu Guo, Nikolay I. Zheludev, and Din Ping Tsai
Opt. Express 20(9) 9415-9420 (2012)

Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography

Toshihiro Okamoto, Tomoya Otsuka, Shuji Sato, Tetsuya Fukuta, and Masanobu Haraguchi
Opt. Express 20(21) 24059-24067 (2012)

Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates

N. R. Han, Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong
Opt. Express 19(8) 6990-6998 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  4. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
    [Crossref] [PubMed]
  5. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005).
    [Crossref] [PubMed]
  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
    [Crossref] [PubMed]
  7. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
    [Crossref] [PubMed]
  8. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  10. F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2(4), 042001 (2009).
    [Crossref]
  11. F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
    [Crossref]
  12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [Crossref] [PubMed]
  13. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
    [Crossref] [PubMed]
  14. W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G. Y. Guo, C. T. Hsiao, K. Y. Yang, N. I. Zheludev, and D. P. Tsai, “Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,” Opt. Express 19(13), 12837–12842 (2011).
    [Crossref] [PubMed]
  15. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express 18(7), 6545–6554 (2010).
    [Crossref] [PubMed]
  16. S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
    [Crossref]
  17. T. Okamoto, T. Fukuta, S. Sato, M. Haraguchi, and M. Fukui, “Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography,” Opt. Express 19(8), 7068–7076 (2011).
    [Crossref] [PubMed]
  18. T. Okamoto, T. Otsuka, S. Sato, T. Fukuta, and M. Haraguchi, “Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography,” Opt. Express 20(21), 24059–24067 (2012).
    [Crossref] [PubMed]
  19. M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
    [Crossref] [PubMed]
  20. T. Serizawa, H. Takeshita, and M. Akashi, “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir 14(15), 4088–4094 (1998).
    [Crossref]
  21. H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
    [Crossref]
  22. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [Crossref]

2013 (1)

S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (2)

N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, “Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation,” Opt. Express 18(7), 6545–6554 (2010).
[Crossref] [PubMed]

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

2009 (3)

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

2008 (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

2007 (2)

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Negative-index metamaterial at 780 nm wavelength,” Opt. Lett. 32(1), 53–55 (2007).
[Crossref] [PubMed]

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (3)

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1998 (1)

T. Serizawa, H. Takeshita, and M. Akashi, “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir 14(15), 4088–4094 (1998).
[Crossref]

1968 (1)

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Akashi, M.

T. Serizawa, H. Takeshita, and M. Akashi, “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir 14(15), 4088–4094 (1998).
[Crossref]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Bocchio, N.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Burger, S.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Busch, K.

Cai, W.

Chen, C. J.

Chen, W. T.

Chettiar, U. K.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dolling, G.

Drachev, V. P.

El-Sayed, M. A.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Feth, N.

Förch, R.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Fukui, M.

Fukuta, T.

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Guo, G. Y.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Hangyo, M.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Haraguchi, M.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Horn, N.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Hsiao, C. T.

Huang, W.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Husnik, M.

Isu, T.

S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
[Crossref]

Jain, P. K.

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Jonas, U.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Kildishev, A. V.

König, M.

Koschny, T.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Kreiter, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Kuboda, S.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Kunitake, T.

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

Linden, S.

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Miyamaru, F.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Muto, E.

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

Nakagawa, Y.

S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
[Crossref]

Nakao, A.

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

Niegemann, J.

Ohzono, T.

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

Okamoto, T.

Otsuka, T.

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Retsch, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sarychev, A. K.

Sato, S.

Schmidt, F.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Serizawa, T.

T. Serizawa, H. Takeshita, and M. Akashi, “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir 14(15), 4088–4094 (1998).
[Crossref]

Shalaev, V. M.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shinomiya, G.

S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
[Crossref]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

Stannigel, K.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sun, S.

Taima, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Takano, K.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Takeda, M. W.

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Takeshita, H.

T. Serizawa, H. Takeshita, and M. Akashi, “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir 14(15), 4088–4094 (1998).
[Crossref]

Tamm, M.

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Tanabete, S.

S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
[Crossref]

Tsai, D. P.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Watanabe, H.

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

Wegener, M.

Wu, P. C.

Yang, K. Y.

Yuan, H.-K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Zheludev, N. I.

Zhou, J. F.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30(23), 3198–3200 (2005).
[Crossref] [PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Zhou, L.

Zschiedrich, L.

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

Appl. Phys. Express (1)

F. Miyamaru, M. W. Takeda, and K. Taima, “Characterization of Terahertz Metamaterials Fabricated on Flexible Plastic Films: Toward Fabrication of Bulk Metamaterials in Terahertz Region,” Appl. Phys. Express 2(4), 042001 (2009).
[Crossref]

Appl. Phys. Lett. (1)

F. Miyamaru, S. Kuboda, K. Taima, K. Takano, M. Hangyo, and M. W. Takeda, “Three-dimensional bulk metamaterials operating in the terahertz range,” Appl. Phys. Lett. 96(8), 081105 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. Tanabete, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, and G. Shinomiya;, “Fabrication and evaluation of photonic metamaterial crystal,” Appl. Phys., A Mater. Sci. Process. 112(3), 605–611 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. Mater. Chem. (1)

H. Watanabe, E. Muto, T. Ohzono, A. Nakao, and T. Kunitake, “Giant nanomembrane of covalently-hybridized epoxy resin and silica,” J. Mater. Chem. 19(16), 2425–2431 (2009).
[Crossref]

Langmuir (1)

T. Serizawa, H. Takeshita, and M. Akashi, “Electrostatic Adsorption of Polystyrene Nanospheres onto the Surface of an Ultrathin Polymer Film Prepared by Using an Alternate Adsorption Technique,” Langmuir 14(15), 4088–4094 (1998).
[Crossref]

Nano Lett. (1)

P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007).
[Crossref]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455(7211), 376–379 (2008).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95(20), 203901 (2005).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Small (1)

M. Retsch, M. Tamm, N. Bocchio, N. Horn, R. Förch, U. Jonas, and M. Kreiter, “Parallel preparation of densely packed arrays of 150-nm gold-nanocrescent resonators in three dimensions,” Small 5(18), 2105–2110 (2009).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the procedure for fabricating the 3D metamaterial. (a) Nanosphere adsorption on the sacrificial layer. (b) Split-ring resonator (SRR) fabrication by the nanosphere lithography (NSL) method. (c) Transparent polymer coating. (d) SRR film separation by dissolving the sacrificial layer. (e) Stacking the SRR film.
Fig. 2
Fig. 2 (a) Scanning electron microscopy (SEM) images of the densely packed split-ring resonators (SRRs) on the sacrificial layer (PHS) before polymer coating. (b) A photograph of the SRR film (an area of over 10 × 10 mm2, thickness of ~230 nm) floating on the surface of the water and (c) adhered to a fingernail.
Fig. 3
Fig. 3 AFM topographic image and cross-section of SRRs with PS nanosphere before (a) and after (b) embedding.
Fig. 4
Fig. 4 SEM image of a profile of the 4-layered SRR-films at oblique view (a) and enlarged view (b). The film thickness and the distance of the SRRs in each layer is shown.
Fig. 5
Fig. 5 Measured transmission spectra of multi-layer split-ring resonator (SRR) films with the same orientation for different numbers of layers (1–4) at (a) Ex and (b) Ey polarizations.

Metrics