Abstract

Both the spatial and temporal evolutions of photorefractive (PR) grating formation by field-induced enhancement in Mn:Fe:KTN crystal are visualized in situ and estimated quantitatively by means of digital holographic microscopy. A series of sequential phase maps are retrieved numerically from the recorded digital holograms to explore the quantitative characteristics of the observed procedure. Further investigations reveal that the properties of PR grating, i.e. amplitude of index modulation and writing time of the grating, can be improved drastically by an external field. The improvement PR grating is attributed to enhanced space-charge fields induced by an external field. This effect can be of interest for many relevant applications, such as electroholographic switching, and in situ and real-time monitoring of both the grating structure and its refractive index profile.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Field-induced lifetime enhancement of photorefractive gratings in a Mn:Fe:KTN crystal

Qieni Lu, Bihua Li, Zhen Li, and Baozhen Ge
Opt. Lett. 42(13) 2407-2410 (2017)

Dipolar holographic gratings induced by the photorefractive process in potassium lithium tantalate niobate at the paraelectric phase

Aharon J. Agranat, Meir Razvag, Michal Balberg, and Victor Leyva
J. Opt. Soc. Am. B 14(8) 2043-2048 (1997)

Dynamic grating features for the surface-induced photorefractive effect in undoped nematics

Pasquale Pagliusi and Gabriella Cipparrone
J. Opt. Soc. Am. B 21(5) 996-1004 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the g44 configuration,” Opt. Lett. 31(19), 2849–2851 (2006).
    [Crossref] [PubMed]
  2. N. Sapiens and A. J. Agranat, “Full C-band tunable laser based on electroholography,” Opt. Lett. 38(12), 2131–2133 (2013).
    [Crossref] [PubMed]
  3. B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat, J. Krupnik, and D. Sadot, “Free-space optical cross-connect switch by use of electroholography,” Appl. Opt. 39(5), 746–758 (2000).
    [Crossref] [PubMed]
  4. N. Sapiens, A. Weissbrod, and A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34(3), 353–355 (2009).
    [Crossref] [PubMed]
  5. D. Pierangeli, J. Parravicini, F. Di Mei, G. B. Parravicini, A. J. Agranat, and E. DelRe, “Photorefractive light needles in glassy nanodisordered KNTN,” Opt. Lett. 39(6), 1657–1660 (2014).
    [Crossref] [PubMed]
  6. B. Pesach, E. Refaeli, and A. J. Agranat, “Investigation of the holographic storage capacity of paraelectric KLTN:Cu,V,” Opt. Lett. 23(8), 642–644 (1998).
    [Crossref] [PubMed]
  7. A. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1-xNbxO3:Cu,V,” Opt. Lett. 14(18), 1017–1019 (1989).
    [Crossref] [PubMed]
  8. T. Imai, J. Miyazu, and J. Kobayashi, “Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application,” Opt. Express 22(12), 14114–14126 (2014).
    [Crossref] [PubMed]
  9. E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
    [Crossref]
  10. H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
    [Crossref]
  11. D. Gong, H. Tian, L. Tan, and Z. Zhou, “Electric field control of a Bragg diffraction optical beam splitter based on a cubic K0.99Li0.01Ta0.63Nb0.37O3 single crystal,” Appl. Opt. 50(1), 28–32 (2011).
    [Crossref] [PubMed]
  12. H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
    [Crossref]
  13. L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
    [Crossref]
  14. Y. C. Chang, C. Wang, S. Yin, R. C. Hoffman, and A. G. Mott, “Giant electro-optic effect in nanodisordered KTN crystals,” Opt. Lett. 38(22), 4574–4577 (2013).
    [Crossref] [PubMed]
  15. Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
    [Crossref]
  16. I. Turek and N. Tarjányi, “Investigation of symmetry of photorefractive effect in LiNbO3.,” Opt. Express 15(17), 10782–10788 (2007).
    [Crossref] [PubMed]
  17. J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).
  18. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
    [Crossref]
  19. Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
    [Crossref]
  20. H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
    [Crossref]
  21. G. Pedrini, I. Alexeenko, W. Osten, and H. J. Tiziani, “Temporal phase unwrapping of digital hologram sequences,” Appl. Opt. 42(29), 5846–5854 (2003).
    [Crossref] [PubMed]
  22. M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
    [Crossref]
  23. M. C. Bashaw, T. P. Ma, and R. C. Barker, “Comparison of single- and two-species models of electron-hole transport in photorefractive media,” J. Opt. Soc. Am. B 9(9), 1666–1672 (1992).
    [Crossref]

2015 (1)

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

2014 (3)

2013 (2)

2012 (3)

H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
[Crossref]

H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
[Crossref]

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

2011 (2)

D. Gong, H. Tian, L. Tan, and Z. Zhou, “Electric field control of a Bragg diffraction optical beam splitter based on a cubic K0.99Li0.01Ta0.63Nb0.37O3 single crystal,” Appl. Opt. 50(1), 28–32 (2011).
[Crossref] [PubMed]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

2010 (1)

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

2009 (1)

2008 (1)

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

2007 (1)

2006 (2)

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

A. Bitman, N. Sapiens, L. Secundo, A. J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the g44 configuration,” Opt. Lett. 31(19), 2849–2851 (2006).
[Crossref] [PubMed]

2003 (2)

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

G. Pedrini, I. Alexeenko, W. Osten, and H. J. Tiziani, “Temporal phase unwrapping of digital hologram sequences,” Appl. Opt. 42(29), 5846–5854 (2003).
[Crossref] [PubMed]

2000 (1)

1998 (1)

1992 (1)

1989 (1)

Agranat, A.

Agranat, A. J.

Alexeenko, I.

Arimoto, H.

H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
[Crossref]

Barker, R. C.

Bartal, G.

Bashaw, M. C.

Bitman, A.

Chang, Y. C.

Chen, H. S.

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

Cheng, C. J.

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

Conti, C.

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Dai, H.

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

de Angelis, M.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

De Nicola, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

DelRe, E.

D. Pierangeli, J. Parravicini, F. Di Mei, G. B. Parravicini, A. J. Agranat, and E. DelRe, “Photorefractive light needles in glassy nanodisordered KNTN,” Opt. Lett. 39(6), 1657–1660 (2014).
[Crossref] [PubMed]

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Di Mei, F.

Ferraro, P.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Finizio, A.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Fukuda, T.

H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
[Crossref]

Ge, B.

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

Gong, D.

D. Gong, H. Tian, L. Tan, and Z. Zhou, “Electric field control of a Bragg diffraction optical beam splitter based on a cubic K0.99Li0.01Ta0.63Nb0.37O3 single crystal,” Appl. Opt. 50(1), 28–32 (2011).
[Crossref] [PubMed]

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

Han, J.

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

Hoffman, R. C.

Hou, C.

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

Imai, T.

Jiang, Y.

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

Karray, M.

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

Kobayashi, J.

Krupnik, J.

Lai, X. J.

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

Lee, Y. T.

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

Leyva, V.

Li, E.

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

Lin, Y. C.

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

Lu, Q.

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

Ma, T. P.

Masaki, K.

H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
[Crossref]

Meng, X. D.

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

Miyazu, J.

Mott, A. G.

Osten, W.

Parravicini, G. B.

Parravicini, J.

Pedrini, G.

Pelli, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Pesach, B.

Picart, P.

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

Pierangeli, D.

Pierattini, G.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Refaeli, E.

Righini, G.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Sadot, D.

Sapiens, N.

Sebastiani, S.

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Secundo, L.

Segev, M.

Shen, Y. Q.

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

Slangen, P.

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

Spinozzi, E.

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Tan, L.

Tarjányi, N.

Tian, H.

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
[Crossref]

D. Gong, H. Tian, L. Tan, and Z. Zhou, “Electric field control of a Bragg diffraction optical beam splitter based on a cubic K0.99Li0.01Ta0.63Nb0.37O3 single crystal,” Appl. Opt. 50(1), 28–32 (2011).
[Crossref] [PubMed]

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

Tiziani, H. J.

Tu, H. Y.

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

Turek, I.

Wang, C.

Wang, H.

H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
[Crossref]

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

Wang, L.

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

Watanabe, W.

H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
[Crossref]

Weissbrod, A.

Yang, D.

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

Yao, B.

H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
[Crossref]

Yariv, A.

Yin, S.

Zhang, P.

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

Zhao, J.

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

Zhao, S.

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

Zhou, J.

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

Zhou, Z.

H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
[Crossref]

D. Gong, H. Tian, L. Tan, and Z. Zhou, “Electric field control of a Bragg diffraction optical beam splitter based on a cubic K0.99Li0.01Ta0.63Nb0.37O3 single crystal,” Appl. Opt. 50(1), 28–32 (2011).
[Crossref] [PubMed]

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

Zhou, Z. X.

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (2)

H. Tian, B. Yao, Z. Zhou, and H. Wang, “Voltage-Controlled Diffraction Modulation in Manganese-Doped Potassium Sodium Tantalate Niobate Single Crystals,” Appl. Phys. Express 5(1), 012602 (2012).
[Crossref]

L. Wang, H. Tian, X. D. Meng, H. S. Chen, Z. X. Zhou, and Y. Q. Shen, “Field-induced enhancement of voltage-controlled diffractive properties in paraelectric iron and manganese co-doped potassium-tantalite-niobate crystal,” Appl. Phys. Express 7(11), 112601 (2014).
[Crossref]

Appl. Phys. Lett. (1)

M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Appl. Phys. Lett. 88(11), 111114 (2006).
[Crossref]

Chin. Phys. Lett. (1)

J. Zhao, P. Zhang, J. Zhou, D. Yang, D. Yang, and E. Li, “Visualization of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 10(20), 1748–1751 (2003).

Exp. Mech. (1)

M. Karray, P. Slangen, and P. Picart, “Comparison between digital Fresnel holography and digital image-plane holography: the role of the imaging aperture,” Exp. Mech. 52(9), 1275–1286 (2012).
[Crossref]

IEEE J. Photonics (1)

Q. Lu, J. Han, H. Dai, B. Ge, and S. Zhao, “Visualization of spatial-temporal evolution of light-induced refractive index in Mn:Fe:KTN co-doped crystal based on digital holographic interferometry,” IEEE J. Photonics 7(4), 2600711 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

Y. C. Lin, Y. T. Lee, X. J. Lai, C. J. Cheng, and H. Y. Tu, “In situ mapping of light-induced refractive index gratings by digital holographic microscopy,” Jpn. J. Appl. Phys. 49(10), 102501 (2010).
[Crossref]

Nat. Photonics (1)

E. DelRe, E. Spinozzi, A. J. Agranat, and C. Conti, “Scale-free optics and diffractionless waves in nanodisordered ferroelectrics,” Nat. Photonics 5(1), 39–42 (2011).
[Crossref]

Opt. Commun. (2)

H. Tian, Z. Zhou, D. Gong, H. Wang, Y. Jiang, and C. Hou, “Photorefractive properties of paraelectric potassium lithium tantalite niobate crystal doped with iron,” Opt. Commun. 281(6), 1720–1724 (2008).
[Crossref]

H. Arimoto, W. Watanabe, K. Masaki, and T. Fukuda, “Measurement of refractive index change induced by dark reaction of photopolymer with digital holographic quantitative phase microscopy,” Opt. Commun. 285(24), 4911–4917 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (7)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for holographic grating writing and monitoring (NF: a variable neutral density filter; BE: beam expander, spatial filter and collimator; PBS/BS: (polarizing) beam splitter; M1-M5: mirror; λ/2: half-wave plate; HV: high-voltage power supply; TC: temperature control system; CL: cylindrical lens).
Fig. 2
Fig. 2 Spatial-temporal evolution of the phase grating formation: (a) 10s; (b) 20s; (c) 40s; (d) 60s; (e) 80s; (f)120s.
Fig. 3
Fig. 3 The profile of refractive index distribution Δn(x,y) at different exposure time.
Fig. 4
Fig. 4 Average ∆n as a function of exposure time: (a) for different writing voltages at 2.0 mW, 30°C, U = 400 V, 600V and 800V, respectively; (b) for different writing-beam powers at 30°C, U0w = 800 V and U = 800 V; (c) for different temperatures at 2.0mW, U0w = 800 V, and U = 800 V; (d) at 30°C, U0w = 0 V, and U = 800 V.
Fig. 5
Fig. 5 Average ∆n as a function (a)-(c) of the reading voltage and (d) of temperature at the grating period of 2.22 μm and exposure time of 100 s: (a) for various writing voltages at 2.0 mW and 30°C; (b) for various writing-beam powers at U0w = 800 V and 30°C; (c) for various temperatures at 2.0mW and U0w = 800 V; (d) for different cooling rate at 1.5 mW, U = 600 V and U0w = 600 V.
Fig. 6
Fig. 6 Reconstructed phase images with electric field applied during writing for various writing angles of (a) 5°, (b) 15° and (c) 20°, the insert is the profile of refractive index distribution (at averaged value along x-axis, see Fig. 2).
Fig. 7
Fig. 7 Same as Fig. 6, but no electric field is applied during writing, and the exposure time is 600s.
Fig. 8
Fig. 8 Average ∆n as a function of reading voltage: (a) with enhanced electric field of U0w = 600 V at 2θ = 5, 15, and 20°, (b) with no enhanced electric field (U0w = 0 V) at 2θ = 5, 15, and 20°. The dots are experimental data and the curves are fitting results.
Fig. 9
Fig. 9 (a) Esc as a function of grating spacing with electric field applied; Δn as a function of reading voltage for different grating spacings with writing voltage of (b) 600 V and (c) 0 V.

Tables (1)

Tables Icon

Table 1 Fitting parameters tw and Δns of curve shown in Fig. 4

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ ( x , y ) = arg [ o 1 ( x , y ) o 2 ( x , y ) ] ,
Δ n ( x , y ) = λ δ ( x , y ) 2 π d ,
Δ n = Δ n s [ 1 exp ( t / t w ) ] .
Δ n = n 0 3 R 11 E 0 E s c ,
E s c = i m E q ( E 0 w + i E D ) E 0 w + i ( E q + E D ) ,
1 E s c = 1 i m E q + 1 m ( E 0 w + i E D ) .

Metrics