Abstract

The fabrication of photonic crystal fibers (PCFs) involves the stacking of multiple preform elements, providing many opportunities for contamination by water vapor or dust particles and causing increased fiber loss. Even after manufacture, diffusion of water vapor into the hollow channels is known to cause a slow increase in loss if the fibers are stored in a humid environment. In this paper we report a systematic study of three methods to reduce OH-related loss in solid-core PCFs: (1) treating the stack (primary preform) with chlorine or oxygen; (2) treating the cane (intermediate preform) with chlorine or oxygen; and (3) using a dry gas for pressurization of the hollow channels during the final step of fiber drawing. Each treatment is independently found effective in reducing OH-related loss, although stack treatment alone is not sufficient if the canes are subsequently stored for a longer time. On the other hand, chlorine-treatment of the canes and/or using a suitably dry gas using fiber drawing significantly lowers the loss even when the canes have been stored for more than two years in a closed tube at room temperature and at relative humidities in the range ~20% to ~50%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reducing spectral attenuation in small-core photonic crystal fibers

I. Gris-Sánchez, B.J. Mangan, and J.C. Knight
Opt. Mater. Express 1(2) 179-184 (2011)

Loss reduction in few-mode photonic crystal fiber by reducing inner surface imperfections in air holes

Lin Ma, Nobutomo Hanzawa, Kyozo Tsujikawa, Shinichi Aozasa, and Fumihiko Yamamoto
Opt. Express 23(10) 13619-13625 (2015)

Loss in solid-core photonic crystal fibers due to interface roughness scattering

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell
Opt. Express 13(20) 7779-7793 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kao and G. A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. IEEE113, 1151–1158 (1966).
  2. C. K. Kao, “Nobel Lecture: Sand from Centuries Past: Send Future Voices Fast” (Nobel Media AB, 2009), retrieved 1 Feb 2016, http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/kao-lecture.html .
  3. P. C. Schultz, “Making the First Low-Loss Optical Fibers,” Opt. Photonics News 21(10), 30–35 (2010).
    [Crossref]
  4. T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (Kluwer Academic Publishers, 1986).
  5. T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
    [Crossref]
  6. J. C. Travers, R. E. Kennedy, S. V. Popov, J. R. Taylor, H. Sabert, and B. Mangan, “Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber,” Opt. Lett. 30(15), 1938–1940 (2005).
    [Crossref] [PubMed]
  7. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  8. I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing Spectral Attenuation in Solid-Core Photonic Crystal Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), OWK1.
    [Crossref]
  9. I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing spectral attenuation in small-core photonic crystal fibers,” Opt. Mater. Express 1(2), 179–184 (2011).
    [Crossref]
  10. R. Müller, P. Gottschling, and M. Gaber, “Water concentration and diffusivity in silicates obtained by vacuum extraction,” Glass Sci. Technol. 78, 76–89 (2005).
  11. W. Hermann, H. Rau, and J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem 89(4), 423–426 (1985).
    [Crossref]
  12. B. T. Kuhlmey, computer code CUDOS MOF Utilities, available at http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .
  13. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19(10), 2331–2340 (2002).
    [Crossref]
  14. W. Wadsworth, J. Knight, and T. Birks, “State-of-the-Art Photonic Crystal Fiber,” Opt. Photonics News 23(3), 24–31 (2012).
    [Crossref]
  15. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St. J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
    [Crossref] [PubMed]
  16. I. Gris-Sánchez and J. C. Knight, “Time-Dependent Degradation of Photonic Crystal Fiber Attenuation Around OH Absorption Wavelengths,” J. Lightwave Technol. 30(23), 3597–3602 (2012).
    [Crossref]
  17. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  18. K. Kurokawa, K. Nakajima, K. Tsujikawa, T. Yamamoto, and K. Tajima, “Ultra-Wideband Transmission Over Low Loss PCF,” J. Lightwave Technol. 27(11), 1653–1662 (2009).
    [Crossref]

2013 (1)

2012 (2)

2011 (1)

2010 (1)

P. C. Schultz, “Making the First Low-Loss Optical Fibers,” Opt. Photonics News 21(10), 30–35 (2010).
[Crossref]

2009 (1)

2005 (3)

2002 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1995 (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

1985 (1)

W. Hermann, H. Rau, and J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem 89(4), 423–426 (1985).
[Crossref]

Atkin, D. M.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Babic, F.

Birks, T.

Birks, T. A.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Botten, L. C.

Couny, F.

de Sterke, C. M.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Farr, L.

Frosz, M. H.

Gaber, M.

R. Müller, P. Gottschling, and M. Gaber, “Water concentration and diffusivity in silicates obtained by vacuum extraction,” Glass Sci. Technol. 78, 76–89 (2005).

Gottschling, P.

R. Müller, P. Gottschling, and M. Gaber, “Water concentration and diffusivity in silicates obtained by vacuum extraction,” Glass Sci. Technol. 78, 76–89 (2005).

Gris-Sánchez, I.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hermann, W.

W. Hermann, H. Rau, and J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem 89(4), 423–426 (1985).
[Crossref]

Hockham, G. A.

C. K. Kao and G. A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. IEEE113, 1151–1158 (1966).

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Kao, C. K.

C. K. Kao and G. A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. IEEE113, 1151–1158 (1966).

Kennedy, R. E.

Knight, J.

Knight, J. C.

Kuhlmey, B. T.

Kurokawa, K.

Mangan, B.

Mangan, B. J.

Mason, M.

Maystre, D.

McPhedran, R. C.

Müller, R.

R. Müller, P. Gottschling, and M. Gaber, “Water concentration and diffusivity in silicates obtained by vacuum extraction,” Glass Sci. Technol. 78, 76–89 (2005).

Nakajima, K.

Nold, J.

Popov, S. V.

Rammler, S.

Rau, H.

W. Hermann, H. Rau, and J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem 89(4), 423–426 (1985).
[Crossref]

Renversez, G.

Roberts, P.

Roberts, P. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Russell, P. St. J.

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. St. J. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013).
[Crossref] [PubMed]

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Sabert, H.

Schultz, P. C.

P. C. Schultz, “Making the First Low-Loss Optical Fibers,” Opt. Photonics News 21(10), 30–35 (2010).
[Crossref]

Shepherd, T. J.

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

St J Russell, P.

Stefani, A.

Tajima, K.

Taylor, J. R.

Tomlinson, A.

Travers, J. C.

Tsujikawa, K.

Ungelenk, J.

W. Hermann, H. Rau, and J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem 89(4), 423–426 (1985).
[Crossref]

Wadsworth, W.

W. Wadsworth, J. Knight, and T. Birks, “State-of-the-Art Photonic Crystal Fiber,” Opt. Photonics News 23(3), 24–31 (2012).
[Crossref]

Weiss, T.

White, T. P.

Williams, D.

Yamamoto, T.

Ber. Bunsenges. Phys. Chem (1)

W. Hermann, H. Rau, and J. Ungelenk, “Solubility and Diffusion of Chlorine in Silica Glass,” Ber. Bunsenges. Phys. Chem 89(4), 423–426 (1985).
[Crossref]

Electron. Lett. (1)

T. A. Birks, P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, “Full 2-D Photonic Bandgaps in Silica/Air Structures,” Electron. Lett. 31(22), 1941–1943 (1995).
[Crossref]

Glass Sci. Technol. (1)

R. Müller, P. Gottschling, and M. Gaber, “Water concentration and diffusivity in silicates obtained by vacuum extraction,” Glass Sci. Technol. 78, 76–89 (2005).

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Photonics News (2)

W. Wadsworth, J. Knight, and T. Birks, “State-of-the-Art Photonic Crystal Fiber,” Opt. Photonics News 23(3), 24–31 (2012).
[Crossref]

P. C. Schultz, “Making the First Low-Loss Optical Fibers,” Opt. Photonics News 21(10), 30–35 (2010).
[Crossref]

Other (5)

T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (Kluwer Academic Publishers, 1986).

C. K. Kao and G. A. Hockham, “Dielectric-Fibre Surface Waveguides for Optical Frequencies,” Proc. IEEE113, 1151–1158 (1966).

C. K. Kao, “Nobel Lecture: Sand from Centuries Past: Send Future Voices Fast” (Nobel Media AB, 2009), retrieved 1 Feb 2016, http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/kao-lecture.html .

I. Gris-Sánchez, B. J. Mangan, and J. C. Knight, “Reducing Spectral Attenuation in Solid-Core Photonic Crystal Fibers,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), OWK1.
[Crossref]

B. T. Kuhlmey, computer code CUDOS MOF Utilities, available at http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Time t1% and temperature T required for the OH-concentration to decay to 1% of its initial value at the center of silica strands of different radii (from the expression in Eq. (1)). The diffusion coefficient is given by D(T) = D0exp[–EA/(RT)], where D0 = 3 × 10−6 cm2/s, EA = 90 kJ/mol, and R is the universal gas constant [10]. The white dashed lines mark the two temperatures relevant to this study: the chlorine furnace treatment temperature (900°C) and the fiber drawing temperature (~1900°C).
Fig. 2
Fig. 2 Upper: Chart summarizing the different treatments. The symbols, used in Fig. 4, indicate the different stack and fiber drawing treatments (square, triangle, six-pointed star and circle). The third and fourth yellow-shaded columns refer to the gas used during fiber drawing. The four right-hand columns give the background-corrected fiber loss αc = (αp – αb) at 1380 nm in three cases when freshly drawn canes were immediately drawn to fiber. The standard error is also indicated—note that this can only be evaluated if the number of canes N is greater than 1. Lower left: sketch of a stack. Lower middle: optical micrograph of a cane. Lower right: scanning electron micrograph of a drawn fiber. The core radius ρ0 is taken as half the minimum distance between the central glass-air interfaces.
Fig. 3
Fig. 3 An example of a loss spectrum measured from a PCF used in this study. The dark blue curve shows the measured loss α and the shaded area indicates the error range ± σp at each wavelength. The lower dashed horizontal line indicates the minimum background loss αb between 1350 and 1426 nm. The OH-related loss at 1380 nm, corrected for background loss, is then αc = αp – αb.
Fig. 4
Fig. 4 Background-corrected peak fiber loss σc at 1380 nm for different types of treatment. The squares, triangles and circles (color-coded for core radius, as indicated in the inset) indicate canes originating from stacks that were respectively untreated (St1), oxygen treated (St2) and chlorine and oxygen treated (St3). The six-pointed stars indicate the use of low-humidity oxygen (<0.5 ppm H2O) instead of nitrogen (<2 ppm H2O) for pressurization during fiber drawing. The green error-bars indicate canes that were chlorine treated just before drawing to fiber. (a) Fiber loss versus chlorine treatment time of the canes at 900°C. Note that the plot does not include any of the fibers that were drawn immediately after cane-drawing (see Fig. 2 and Section 3.1). (b) Fiber loss versus cane storage time. Data-points with less than 1 month difference in storage time and otherwise equal treatment are averaged together, the error bars indicating the standard error of the mean.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t 1 % 0.8 ρ 0 2 / D ( T )
S i O H + H O S i S i O S i + H 2 O
S i O H   +   O H Si   +   C l 2     S i O S i   +   1 2 O 2   +   2 H C l S i O H   +   C l 2     S i C l   +   1 2 O 2   +   2 H C l

Metrics