Abstract

A composite YAG/Nd:YAG/YAG ceramic was fabricated and the laser performance was investigated in this paper. It was proved to have a better thermal diffusion ability when compared to a traditional non-composite Nd:YAG ceramic. In a continuous-wave operation, the maximum output power was 8.2 W for a YAG/Nd:YAG/YAG ceramic laser with Nd3+ ion concentrations of 1 at%, and that for a traditional Nd:YAG ceramic laser was 6.5 W. For the laser beam quality factor measurement, it was found to be 1.6 and 1.7 for horizontal and vertical directions, respectively, for a YAG/Nd:YAG/YAG ceramic laser at an absorbed incident power of 13.5 W, and for a Nd:YAG ceramic laser it was 2.6 and 2.8, respectively. In the passively Q-switched operation, at an absorbed pump power of 19 W, the average output power and pulse energy for Cr4+:YAG crystal with an initial transmission of T0 = 80% and T0 = 85% was 3.25 W, 59.4 μJ and 4.14 W, 54.8 μJ, respectively. The pulse width was about 11 ns and 15.5 ns for Cr4+:YAG crystal with T0 = 80% and T0 = 85%, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser

Zhengping Wang, Hong Liu, Jiyang Wang, Yaohui Lv, Yuanhua Sang, Ruijun Lan, Haohai Yu, Xinguang Xu, and Zongshu Shao
Opt. Express 17(14) 12076-12081 (2009)

Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers

Yan Feng, Jianren Lu, Kazunori Takaichi, Ken-ichi Ueda, Hideki Yagi, Takagimi Yanagitani, and Alexander A. Kaminskii
Appl. Opt. 43(14) 2944-2947 (2004)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23(19), 24955–24961 (2015).
    [Crossref] [PubMed]
  2. K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
    [Crossref]
  3. Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22(20), 24655–24665 (2014).
    [Crossref] [PubMed]
  4. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd3+:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  5. Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
    [Crossref]
  6. J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
    [Crossref]
  7. V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
    [Crossref]
  8. J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
    [Crossref]
  9. Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
    [Crossref] [PubMed]
  10. X. Li, X. Yu, F. Chen, R. Yan, M. Luo, J. Yu, and D. Chen, “Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal,” Opt. Express 18(7), 7407–7414 (2010).
    [Crossref] [PubMed]
  11. Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
    [Crossref]
  12. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [Crossref]
  13. S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
    [Crossref]
  14. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
    [Crossref]
  15. Y. Ma, X. Yu, X. Li, R. Fan, and J. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
    [Crossref] [PubMed]
  16. Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
    [Crossref]
  17. W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
    [Crossref]
  18. J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
    [Crossref]

2015 (1)

2014 (2)

2012 (3)

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
[Crossref]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

2011 (4)

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Y. Ma, X. Yu, X. Li, R. Fan, and J. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
[Crossref] [PubMed]

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd3+:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (2)

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

2006 (1)

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

2004 (2)

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

2002 (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

1999 (1)

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

Ba, X. W.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Balembois, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Bo, Y.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Braun, B.

Chen, D.

Chen, F.

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

X. Li, X. Yu, F. Chen, R. Yan, M. Luo, J. Yu, and D. Chen, “Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal,” Opt. Express 18(7), 7407–7414 (2010).
[Crossref] [PubMed]

Cui, D. F.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Druon, F.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Fan, R.

Feng, X. Q.

Fève, J. P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Fluck, R.

Forget, S.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Georges, P.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Gini, E.

Guo, J. K.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Guo, Y. D.

He, Y.

Huang, L. P.

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Ikesue, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

Jiang, B. X.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Jin, G. X.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Kaminskii, A. A.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

Keller, U.

Landru, N.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Lei, W.

Li, F. Q.

Li, G. Q.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Li, J.

Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23(19), 24955–24961 (2015).
[Crossref] [PubMed]

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Li, L.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Li, X.

Li, X. D.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
[Crossref]

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

Lin, J. L.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Liu, J.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, M.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, Q.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Liu, S. H.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, S. S.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Liu, W. B.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Lu, J.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

Luo, M.

Lupei, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

Ma, Y.

Ma, Y. F.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
[Crossref]

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

Moser, M.

Pan, Y.

Pan, Y. B.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Paschotta, R.

Pavel, N.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd3+:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

Peng, J.

Peng, Q. J.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Sato, Y.

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

Shen, Y.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Shen, Y. Q.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Spühler, G. J.

Sun, R.

Taira, T.

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd3+:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

Tian, W. M.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Tittel, F. K.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
[Crossref]

Tsunekane, M.

Tu, W.

Ueda, K.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

Wang, C.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Wang, C. H.

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

Wang, L.

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Wang, P. Y.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Weng, Z. M.

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Wu, Y. S.

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Xu, J. L.

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Xu, X.

Xu, Y. D.

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Xu, Z. Y.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Yagi, H.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

Yan, R.

Yan, R. P.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

Yanagitani, T.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

Yang, K. J.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Yu, J.

Yu, J. H.

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Yu, X.

Y. Ma, Y. He, X. Yu, X. Li, J. Li, R. Yan, J. Peng, X. Zhang, R. Sun, Y. Pan, and D. Chen, “Multiple-beam, pulse-burst, passively Q-switched ceramic Nd:YAG laser under micro-lens array pumping,” Opt. Express 23(19), 24955–24961 (2015).
[Crossref] [PubMed]

Y. Ma, X. Li, X. Yu, R. Fan, R. Yan, J. Peng, X. Xu, R. Sun, and D. Chen, “A novel miniaturized passively Q-switched pulse-burst laser for engine ignition,” Opt. Express 22(20), 24655–24665 (2014).
[Crossref] [PubMed]

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
[Crossref]

Y. Ma, X. Yu, X. Li, R. Fan, and J. Yu, “Comparison on performance of passively Q-switched laser properties of continuous-grown composite GdVO4/Nd:GdVO4 and YVO4/Nd:YVO4 crystals under direct pumping,” Appl. Opt. 50(21), 3854–3859 (2011).
[Crossref] [PubMed]

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

X. Li, X. Yu, F. Chen, R. Yan, M. Luo, J. Yu, and D. Chen, “Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal,” Opt. Express 18(7), 7407–7414 (2010).
[Crossref] [PubMed]

Zeng, Y. P.

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Zhang, D.

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Zhang, G.

Zhang, J. Y.

Zhang, X.

Zhang, Y.

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

Zhao, H. M.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Zhao, S. Z.

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

Zong, N.

Y. Shen, W. B. Liu, N. Zong, J. Li, Y. Bo, X. Q. Feng, F. Q. Li, Y. B. Pan, Y. D. Guo, P. Y. Wang, W. Tu, Q. J. Peng, J. Y. Zhang, W. Lei, D. F. Cui, and Z. Y. Xu, “Comparison of laser induced thermal fracture between polycrystalline ceramic and crystal Nd:YAG,” Opt. Lett. 39(7), 1965–1967 (2014).
[Crossref] [PubMed]

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. F. Ma, X. Yu, F. K. Tittel, R. P. Yan, X. D. Li, C. Wang, and J. H. Yu, “Output properties of diode-pumped passively Q-switched 1.06 μm Nd:GdVO4 laser using a [100]-cut Cr4+:YAG crystal,” Appl. Phys. B 107(2), 339–342 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

K. J. Yang, S. Z. Zhao, G. Q. Li, and H. M. Zhao, “A new model of laser-diode end-pumped actively Q-switched intracavity frequency doubling laser,” IEEE J. Quantum Electron. 40(9), 1252–1257 (2004).
[Crossref]

J. Alloys Compd. (2)

W. B. Liu, Y. P. Zeng, J. Li, Y. Shen, Y. Bo, N. Zong, P. Y. Wang, Y. D. Xu, J. L. Xu, D. F. Cui, Q. J. Peng, Z. Y. Xu, D. Zhang, and Y. B. Pan, “Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics,” J. Alloys Compd. 527, 66–70 (2012).
[Crossref]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341(1), 220–225 (2002).
[Crossref]

J. Mod. Opt. (1)

J. Liu, C. H. Wang, S. H. Liu, W. M. Tian, L. Li, S. S. Liu, and M. Liu, “Characterization of passively Q-switched mode-locking diode-pumped Nd:GdVO4 laser with Cr4+:YAG saturable absorber,” J. Mod. Opt. 55(12), 1971–1980 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

S. Forget, F. Druon, F. Balembois, P. Georges, N. Landru, J. P. Fève, J. L. Lin, and Z. M. Weng, “Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser,” Opt. Commun. 259(2), 816–819 (2006).
[Crossref]

Y. F. Ma, Y. Zhang, X. Yu, X. D. Li, F. Chen, and R. P. Yan, “Doubly Q-switched GdVO4/Nd:GdVO4 laser with AO modulator and Cr4+:YAG saturable absorber under direct 879 nm diode pumping to the emitting level,” Opt. Commun. 284(10-11), 2569–2572 (2011).
[Crossref]

Y. F. Ma, X. Yu, F. K. Tittel, and X. D. Li, “Diode-pumped continuous-wave and passively Q-switched 1.06 μm YVO4/Nd:GdVO4 laser,” Opt. Commun. 285(7), 1911–1914 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

J. Li, Y. S. Wu, Y. B. Pan, W. B. Liu, L. P. Huang, and J. K. Guo, “Fabrication, microstructure and properties of highly transparent Nd:YAG laser ceramics,” Opt. Mater. 31(1), 6–17 (2008).
[Crossref]

Proc. SPIE (2)

V. Lupei, A. Lupei, N. Pavel, T. Taira, Y. Sato, and A. Ikesue, “Comparison of Nd:YAG single crystals and transparent ceramics as laser materials,” Proc. SPIE 5581, 212–219 (2004).
[Crossref]

J. Li, W. B. Liu, J. Liu, Y. P. Zeng, X. W. Ba, B. X. Jiang, Y. Q. Shen, L. Wang, G. X. Jin, Q. Liu, Y. B. Pan, and J. K. Guo, “Composite YAG/Nd:YAG transparent ceramics for high-power lasers,” Proc. SPIE 8206, 82061Z (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup of the passively Q-switched ceramic laser.
Fig. 2
Fig. 2 Three dimensional temperature distribution for different ceramics under the same conditions: (a) traditional non-composite Nd:YAG ceramic; (b) composite YAG/Nd:YAG/YAG ceramic.
Fig. 3
Fig. 3 Temperature curve for different ceramics on pumping surface: (a) X direction for composite YAG/Nd:YAG/YAG ceramic; (b) Y direction for composite YAG/Nd:YAG/YAG ceramic; (c) X direction for traditional non-composite Nd:YAG ceramic; (d). Y direction for traditional non-composite Nd:YAG ceramic.
Fig. 4
Fig. 4 CW output power as a function of absorbed pump power for CNd3+ of 1 at%: (a) composite YAG/Nd:YAG/YAG ceramic; (b) traditional non-composite Nd:YAG ceramic.
Fig. 5
Fig. 5 The beam profiles of two ceramic lasers under the same absorbed pump power.
Fig. 6
Fig. 6 CW output power of composite YAG/Nd:YAG/YAG ceramic laser as a function of absorbed pump power when CNd3+ was 1.5 at%.
Fig. 7
Fig. 7 Passively Q-switched YAG/Nd:YAG/YAG ceramic laser performance as a function of absorbed pump power: (a) average output power; (b) repetition rate.
Fig. 8
Fig. 8 The pulse width of passively Q-switched YAG/Nd:YAG/YAG ceramic laser as a function of absorbed pump power.
Fig. 9
Fig. 9 Passively Q-switched YAG/Nd:YAG/YAG ceramic laser performance as a function of absorbed pump power: (a) pulse energy; (b) pulse peak power.

Metrics