Abstract

Compact, affordable mid-IR lasers require the development of gain materials in waveguide form. We report on the high vacuum deposition of Cr:ZnS films with concentration ranging from 1018-1020 dopants/cm3 . At low concentrations, films display well-isolated absorption associated with substitutional Cr2+ ions in the lattice. Spatial modulation of the dopant concentration suppresses the absorption associated with this substitution. Lateral crystallite sizes less than 30 nm are associated with the lowest substrate temperatures (<50 °C) used during deposition, and waveguide losses as low as 8dB/cm are observed. These materials are promising candidates as gain media for fabrication of waveguide mid-IR lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Band-edge modification and mid-infrared absorption of co-deposited FexZn1-xS thin films

Nelly-Ann Molland, Zahra Ghadyani, Eric A. Karhu, Stefano Poggio, Mohammadreza Nematollahi, Morten Kildemo, Turid W. Reenaas, Joseph J. BelBruno, and Ursula J. Gibson
Opt. Mater. Express 5(7) 1613-1620 (2015)

Optical and photoelectric properties of Mn-doped ZnS thin film on a flexible indium-tin-oxide/polyethylene terephthalate substrate prepared by pulsed laser deposition

Byeongdae Choi, Hyunseok Shim, Bunyod Allabergenov, and Myoung-Jae Lee
Opt. Mater. Express 6(7) 2336-2341 (2016)

Erbium fiber laser–pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin
Opt. Lett. 27(11) 909-911 (2002)

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
    [Crossref]
  2. C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
    [Crossref]
  3. D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
    [Crossref]
  4. S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
    [Crossref]
  5. S. Wang, S. B. Mirov, V. V. Fedorov, and R. P. Camata, “Synthesis and spectroscopic properties of Cr doped ZnS crystalline thin films,” in Solid State Lasers Xiii: Technology and Devices, R. Scheps and H. J. Hoffman, eds. (Spie-Int Soc Optical Engineering, 2004), Vol. 5332, pp. 13–20.
  6. J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2,333 nm,” Opt. Express 22(6), 7052–7057 (2014).
    [Crossref] [PubMed]
  7. N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
    [Crossref]
  8. M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
    [Crossref]
  9. J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
    [Crossref]
  10. I. P. McClean and C. B. Thomas, “Photoluminescence study of MBE-grown films on ZnS,” Semicond. Sci. Technol. 7(11), 1394–1399 (1992).
    [Crossref]
  11. M. C. Morris, H. F. McMurdie, E. H. Evans, B. Paretzkin, J. H. de Groot, C. R. Hubbard, and S. J. Carmel, Standard X-Ray Diffraction Powder Patterns: - 13- Data for 58 Substances (National Bureau of Standards, 1976), Vol. #00–027–1402.
  12. T. Huang, W. Parrish, N. Masciocchi, and P. Wang, in Advances in X-Ray Analysis - Volume 33 | Charles S. Barrett | Springer (n.d.), Vol. 33, p. 295.
  13. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009).
    [Crossref] [PubMed]
  14. M. D. Himel and U. J. Gibson, “Measurement of planar waveguide losses using a coherent fiber bundle,” Appl. Opt. 25(23), 4413 (1986).
    [Crossref] [PubMed]
  15. I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr(2+):ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
    [Crossref] [PubMed]
  16. M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
    [Crossref]
  17. V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
    [Crossref]
  18. J. Peppers, V. V. Fedorov, and S. B. Mirov, “Mid-IR photoluminescence of Fe2+ and Cr2+ ions in ZnSe crystal under excitation in charge transfer bands,” Opt. Express 23(4), 4406–4414 (2015).
    [Crossref] [PubMed]
  19. R. Swanepoel, “Determination of the Thickness and Optical-Constants of Amorphous-Silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
    [Crossref]
  20. D. Minkov and R. Swanepoel, “Computerization of the Optical Characterization of a Thin Dielectric Film,” Opt. Eng. 32(12), 3333–3337 (1993).
    [Crossref]
  21. S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEEE Proc. - Optoelectron. 150, 340–345 (2003).
    [Crossref]
  22. E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in (OSA, 2016), p. STu4R.2.
  23. N. Tolstik, E. Sorokin, E. A. Karhu, S. Polyakov, U. J. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in (OSA, 2016), p. JFK1.5.
  24. S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
    [Crossref]
  25. M. D. Himel, J. A. Ruffner, and U. J. Gibson, “Stress modification and reduced waveguide losses in ZnS thin films,” Appl. Opt. 27(14), 2810–2811 (1988).
    [Crossref] [PubMed]
  26. J. A. Ruffner, M. D. Himel, V. Mizrahi, G. L. Stegeman, and U. J. Gibson, “Effects of low substrate temperature and ion assisted deposition on composition, optical properties, and stress of ZnS thin films,” Appl. Opt. 28(24), 5209–5214 (1989).
    [Crossref] [PubMed]
  27. H. Nelkowski and G. Grebe, “IR-luminescence of ZnS:Cr,” J. Lumin. 1, 88–93 (1970).
    [Crossref]
  28. E. Seim, “TEM characterization of Cr-doped ZnS Thin Films for Solar Cell applications; http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25057 ,” MS thesis, Norwegian Univ. of Sci & Technol (2014).
  29. N.-A. Molland, Z. Ghadyani, E. A. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fe_xZn_1-xS thin films,” Opt. Mater. Express 5(7), 1613 (2015).
    [Crossref]
  30. E. J. Baerends and E. Baerends, “Precise Density-Functional Method for Periodic Structures,” Phys. Rev. B Condens. Matter 44(15), 7888–7903 (1991).
    [Crossref] [PubMed]
  31. S. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).
    [Crossref]
  32. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
    [Crossref] [PubMed]

2015 (4)

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

J. Peppers, V. V. Fedorov, and S. B. Mirov, “Mid-IR photoluminescence of Fe2+ and Cr2+ ions in ZnSe crystal under excitation in charge transfer bands,” Opt. Express 23(4), 4406–4414 (2015).
[Crossref] [PubMed]

N.-A. Molland, Z. Ghadyani, E. A. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fe_xZn_1-xS thin films,” Opt. Mater. Express 5(7), 1613 (2015).
[Crossref]

2014 (2)

2013 (2)

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

2010 (1)

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

2009 (2)

C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
[Crossref]

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009).
[Crossref] [PubMed]

2008 (1)

J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
[Crossref]

2002 (1)

1998 (1)

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

1997 (1)

V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

1993 (1)

D. Minkov and R. Swanepoel, “Computerization of the Optical Characterization of a Thin Dielectric Film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

1992 (1)

I. P. McClean and C. B. Thomas, “Photoluminescence study of MBE-grown films on ZnS,” Semicond. Sci. Technol. 7(11), 1394–1399 (1992).
[Crossref]

1991 (1)

E. J. Baerends and E. Baerends, “Precise Density-Functional Method for Periodic Structures,” Phys. Rev. B Condens. Matter 44(15), 7888–7903 (1991).
[Crossref] [PubMed]

1989 (1)

1988 (1)

1986 (1)

1983 (1)

R. Swanepoel, “Determination of the Thickness and Optical-Constants of Amorphous-Silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

1980 (1)

S. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).
[Crossref]

1970 (1)

H. Nelkowski and G. Grebe, “IR-luminescence of ZnS:Cr,” J. Lumin. 1, 88–93 (1970).
[Crossref]

Aas, L. M. S.

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Badikov, V.

Baerends, E.

E. J. Baerends and E. Baerends, “Precise Density-Functional Method for Periodic Structures,” Phys. Rev. B Condens. Matter 44(15), 7888–7903 (1991).
[Crossref] [PubMed]

Baerends, E. J.

E. J. Baerends and E. Baerends, “Precise Density-Functional Method for Periodic Structures,” Phys. Rev. B Condens. Matter 44(15), 7888–7903 (1991).
[Crossref] [PubMed]

Beecher, S. J.

BelBruno, J. J.

Berry, P. A.

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Camata, R. P.

J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
[Crossref]

Chaichimansour, M.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Chen, M.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Crescimanno, M.

Denisova, Z. L.

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr(2+):ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
[Crossref] [PubMed]

Fedorov, V. V.

J. Peppers, V. V. Fedorov, and S. B. Mirov, “Mid-IR photoluminescence of Fe2+ and Cr2+ ions in ZnSe crystal under excitation in charge transfer bands,” Opt. Express 23(4), 4406–4414 (2015).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
[Crossref]

J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
[Crossref]

Ghadyani, Z.

N.-A. Molland, Z. Ghadyani, E. A. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fe_xZn_1-xS thin films,” Opt. Mater. Express 5(7), 1613 (2015).
[Crossref]

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Gibson, U. J.

Godlewski, M.

V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
[Crossref]

Grebe, G.

H. Nelkowski and G. Grebe, “IR-luminescence of ZnS:Cr,” J. Lumin. 1, 88–93 (1970).
[Crossref]

Himel, M. D.

Hu, C.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Ilic, R.

Ivanov, V. Y.

V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
[Crossref]

Jiang, B.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Kar, A. K.

Karhu, E. A.

Kildemo, M.

N.-A. Molland, Z. Ghadyani, E. A. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fe_xZn_1-xS thin films,” Opt. Mater. Express 5(7), 1613 (2015).
[Crossref]

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Kim, C.

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
[Crossref]

Kou, H.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Lancaster, A.

Li, J.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Li, W.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Macdonald, J. R.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Martyshkin, D. V.

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
[Crossref]

McClean, I. P.

I. P. McClean and C. B. Thomas, “Photoluminescence study of MBE-grown films on ZnS,” Semicond. Sci. Technol. 7(11), 1394–1399 (1992).
[Crossref]

Minkov, D.

D. Minkov and R. Swanepoel, “Computerization of the Optical Characterization of a Thin Dielectric Film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

Mirov, M.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

I. T. Sorokina, E. Sorokin, S. Mirov, V. Fedorov, V. Badikov, V. Panyutin, and K. I. Schaffers, “Broadly tunable compact continuous-wave Cr(2+):ZnS laser,” Opt. Lett. 27(12), 1040–1042 (2002).
[Crossref] [PubMed]

Mirov, S. B.

J. Peppers, V. V. Fedorov, and S. B. Mirov, “Mid-IR photoluminescence of Fe2+ and Cr2+ ions in ZnSe crystal under excitation in charge transfer bands,” Opt. Express 23(4), 4406–4414 (2015).
[Crossref] [PubMed]

J. R. Macdonald, S. J. Beecher, A. Lancaster, P. A. Berry, K. L. Schepler, S. B. Mirov, and A. K. Kar, “Compact Cr:ZnS channel waveguide laser operating at 2,333 nm,” Opt. Express 22(6), 7052–7057 (2014).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
[Crossref]

J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
[Crossref]

Mizrahi, V.

Molland, N.-A.

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

Moskalev, I. S.

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

Mukhlyo, M. A.

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

Nelkowski, H.

H. Nelkowski and G. Grebe, “IR-luminescence of ZnS:Cr,” J. Lumin. 1, 88–93 (1970).
[Crossref]

Nematollahi, M.

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

N.-A. Molland, Z. Ghadyani, E. A. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fe_xZn_1-xS thin films,” Opt. Mater. Express 5(7), 1613 (2015).
[Crossref]

Nusair, M.

S. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).
[Crossref]

Oleksenko, P. F.

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

Pan, Y.

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

Panyutin, V.

Park, W.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Peppers, J.

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Poggio, S.

Reenaas, T. W.

N.-A. Molland, Z. Ghadyani, E. A. Karhu, S. Poggio, M. Nematollahi, M. Kildemo, T. W. Reenaas, J. J. BelBruno, and U. J. Gibson, “Band-edge modification and mid-infrared absorption of co-deposited Fe_xZn_1-xS thin films,” Opt. Mater. Express 5(7), 1613 (2015).
[Crossref]

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Ruffner, J. A.

Schaffers, K. I.

Schepler, K. L.

Schön, S.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Semenov, Y. G.

V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
[Crossref]

Sorokin, E.

Sorokina, I. T.

Stegeman, G. L.

Summers, C. J.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Surma, M.

V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
[Crossref]

Swanepoel, R.

D. Minkov and R. Swanepoel, “Computerization of the Optical Characterization of a Thin Dielectric Film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

R. Swanepoel, “Determination of the Thickness and Optical-Constants of Amorphous-Silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

Thomas, C. B.

I. P. McClean and C. B. Thomas, “Photoluminescence study of MBE-grown films on ZnS,” Semicond. Sci. Technol. 7(11), 1394–1399 (1992).
[Crossref]

Thomas, E. W.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Topolancik, J.

Veligura, L. I.

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

Vlasenko, N. A.

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

Vollmer, F.

Vosko, S.

S. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).
[Crossref]

Wagner, B. K.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Wilk, L.

S. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).
[Crossref]

Williams, J. E.

J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
[Crossref]

Yang, T.

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Yang, X.

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Ann. Phys. (1)

N. A. Vlasenko, P. F. Oleksenko, M. A. Mukhlyo, Z. L. Denisova, and L. I. Veligura, “ZnS:Cr and ZnSe:Cr thin-film waveguide structures as electrically pumped laser media with an impact excitation mechanism,” Ann. Phys. 525(12), 889–905 (2013).
[Crossref]

Appl. Opt. (3)

Appl. Phys. - Mater. Sci. Process. (1)

J. E. Williams, R. P. Camata, V. V. Fedorov, and S. B. Mirov, “Pulsed laser deposition of chromium-doped zinc selenide thin films for mid-infrared applications,” Appl. Phys. - Mater. Sci. Process. 91(2), 333–335 (2008).
[Crossref]

Can. J. Phys. (1)

S. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin-Density Calculations - a Critical Analysis,” Can. J. Phys. 58(8), 1200–1211 (1980).
[Crossref]

Ceram. Int. (1)

M. Chen, C. Hu, W. Li, H. Kou, J. Li, Y. Pan, and B. Jiang, “Cr3+ in diffusion doped Cr2+:ZnS,” Ceram. Int. 40(5), 7573–7577 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601519 (2015).
[Crossref]

J. Lumin. (3)

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin. 133, 268–275 (2013).
[Crossref]

V. Y. Ivanov, Y. G. Semenov, M. Surma, and M. Godlewski, “On the nature of the anti-Stokes luminescence in chromium-doped ZnSe crystals,” J. Lumin. 72–4, 101–102 (1997).
[Crossref]

H. Nelkowski and G. Grebe, “IR-luminescence of ZnS:Cr,” J. Lumin. 1, 88–93 (1970).
[Crossref]

J. Opt. (1)

D. V. Martyshkin, V. V. Fedorov, C. Kim, I. S. Moskalev, and S. B. Mirov, “Mid-IR random lasing of Cr-doped ZnS nanocrystals,” J. Opt. 12(2), 24005 (2010).
[Crossref]

J. Phys. E Sci. Instrum. (1)

R. Swanepoel, “Determination of the Thickness and Optical-Constants of Amorphous-Silicon,” J. Phys. E Sci. Instrum. 16(12), 1214–1222 (1983).
[Crossref]

J. Soc. Inf. Disp. (1)

S. Schön, M. Chaichimansour, W. Park, E. W. Thomas, T. Yang, B. K. Wagner, and C. J. Summers, “Improved photoluminescent properties of ZnS: Mn due to the δ-doping process,” J. Soc. Inf. Disp. 6(1), 67–71 (1998).
[Crossref]

Opt. Commun. (1)

C. Kim, D. V. Martyshkin, V. V. Fedorov, and S. B. Mirov, “Middle-infrared random lasing of Cr2+ doped ZnSe, ZnS, CdSe powders, powders imbedded in polymer liquid solutions, and polymer films,” Opt. Commun. 282(10), 2049–2052 (2009).
[Crossref]

Opt. Eng. (1)

D. Minkov and R. Swanepoel, “Computerization of the Optical Characterization of a Thin Dielectric Film,” Opt. Eng. 32(12), 3333–3337 (1993).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter (1)

E. J. Baerends and E. Baerends, “Precise Density-Functional Method for Periodic Structures,” Phys. Rev. B Condens. Matter 44(15), 7888–7903 (1991).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3868 (1996).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

I. P. McClean and C. B. Thomas, “Photoluminescence study of MBE-grown films on ZnS,” Semicond. Sci. Technol. 7(11), 1394–1399 (1992).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. Nematollahi, X. Yang, L. M. S. Aas, Z. Ghadyani, M. Kildemo, U. J. Gibson, and T. W. Reenaas, “Molecular beam and pulsed laser deposition of ZnS:Cr for intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 141, 322–330 (2015).
[Crossref]

Other (7)

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, I. T. Sorokina, E. Sorokin, V. Gapontsev, D. Gapontsev, V. V. Badikov, and V. Panyutin, “Diode and fibre pumped Cr2+:ZnS mid-infrared external cavity and microchip lasers,” IEEE Proc. - Optoelectron. 150, 340–345 (2003).
[Crossref]

E. Karhu, N. Tolstik, E. Sorokin, S. Polyakov, R. Zamiri, V. Furtula, U. Osterberg, I. T. Sorokina, and U. J. Gibson, “Towards Mid-IR Waveguide Lasers: Transition Metal Doped ZnS Thin Films,” in (OSA, 2016), p. STu4R.2.

N. Tolstik, E. Sorokin, E. A. Karhu, S. Polyakov, U. J. Gibson, and I. T. Sorokina, “MBE-grown Cr:ZnS Thin Film Laser Media,” in (OSA, 2016), p. JFK1.5.

M. C. Morris, H. F. McMurdie, E. H. Evans, B. Paretzkin, J. H. de Groot, C. R. Hubbard, and S. J. Carmel, Standard X-Ray Diffraction Powder Patterns: - 13- Data for 58 Substances (National Bureau of Standards, 1976), Vol. #00–027–1402.

T. Huang, W. Parrish, N. Masciocchi, and P. Wang, in Advances in X-Ray Analysis - Volume 33 | Charles S. Barrett | Springer (n.d.), Vol. 33, p. 295.

S. Wang, S. B. Mirov, V. V. Fedorov, and R. P. Camata, “Synthesis and spectroscopic properties of Cr doped ZnS crystalline thin films,” in Solid State Lasers Xiii: Technology and Devices, R. Scheps and H. J. Hoffman, eds. (Spie-Int Soc Optical Engineering, 2004), Vol. 5332, pp. 13–20.

E. Seim, “TEM characterization of Cr-doped ZnS Thin Films for Solar Cell applications; http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-25057 ,” MS thesis, Norwegian Univ. of Sci & Technol (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Transmission vs. energy for a film with 2.6 at% Cr deposited onto an unheated substrate. (b) Ratio of chromium absorption features as a function of concentration.

Fig. 2
Fig. 2

(a) Envelope of the transmission curves for films grown without heating (blue - RT), deposited without heating, then annealed at 400 °C for 12 h(green - RTA) and full transmission curve for a film deposited at 200 °C (red curve - ET). Features at 800, 1400 and 2200 nm are artifacts from the spectrometer. (b) index of refraction for the same films, compared to bulk ZnS (c) comparison of infrared transmission for vacuum deposited (black line) and PLD (red line) [5] films on silicon (100) substrates d) Absorption cross-section for the Cr2+ ions in bulk Cr:ZnS [21], compared to the cross-section for absorption in the film, relative to the total concentration of Cr atoms in the film.

Fig. 3
Fig. 3

Relative absorption of films deposited with continuous and modulated Cr fluxes. The modulated films (black dotted and red dashed curves) show little absorption from the Cr2+ ions relative to films with similar overall concentration deposited with a continuous Cr flux (blue curve). The double line (green) curve is the absorption of a film with a concentration similar to the peak value in the 25% duty cycle film, scaled down by a factor of four. The gray area indicates the region where the absolute accuracy is limited by the instrument; the offset of the curves was adjusted to make them coincide at 2500 nm.

Fig. 4
Fig. 4

(a) Schematic of measurement system, (b) 2-d scan of the intensity of scattered light from within the waveguide for the ET film shown in Fig. 2 and 3 (c) Plot of the natural log of the maximum intensity at each position along the length of the waveguide streak, along with an curve fit used to determine the attenuation.

Fig. 5
Fig. 5

(a) X-ray diffraction scans of ZnS and Cr:ZnS films deposited without substrate heating (RT), Cr:ZnS heated to 200 °C during deposition (ET) and heated to 400°C after deposition (RTA). (b) Crystalline order increases upon the addition of Cr or an increase in substrate temperature, but is not directly associated with improved fluorescence properties. Post deposition annealing enhances the (wurtzite/sphalerite) peak at 47.5 and 56.4 degrees without degrading the fluorescence.

Fig. 6
Fig. 6

Density of states from DFT calculations (a) Cr.04Zn.96S uniform doping, and (b) delta-doped Cr in ZnS (equivalent concentration is 16 at% limited by the size of the simulation that could be run).

Metrics