Abstract

We investigated the optical, electrical, and structural properties of epitaxially grown Ge-on-Si substrates after phosphorous implantation. Ion implantation increases n-type doping in Ge for an on-chip light source. However, its effects on Ge should be carefully studied as implantation may increase the recombination sites, and possibly reduce light-emitting efficiency. We studied the light-emitting efficiency of implanted Ge using various material characterizations. We found that phosphorous implantation increased the doping concentration of in situ doped Ge-on-Si, which boosted the photoluminescence by 12–30%. It is therefore critical to optimize the post-annealing and implantation doses to increase light-emitting efficiency of Ge.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dependences of photoluminescence from P-implanted epitaxial Ge

L. Ding, Andy Eu-Jin Lim, Jason Tsung-Yang Liow, M. B. Yu, and G.-Q. Lo
Opt. Express 20(8) 8228-8239 (2012)

High active carrier concentration in n-type, thin film Ge using delta-doping

Rodolfo E. Camacho-Aguilera, Yan Cai, Jonathan T. Bessette, Lionel C. Kimerling, and Jurgen Michel
Opt. Mater. Express 2(11) 1462-1469 (2012)

Barrier layer induced channeling effect of As ion implantation in HgCdTe and its influences on electrical properties of p–n junctions

Changzhi Shi, Chun Lin, Yanfeng Wei, Lu Chen, and Mingxing Zhu
Appl. Opt. 55(34) D101-D105 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” Solid-State Circuits, IEEE Journal of 17(2), 275–280 (1982).
    [Crossref]
  2. M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” in International Electron Devices Meeting, (Institute Of Electrical & Electronic Engineers, Inc (IEEE), 1995), 241–244.
    [Crossref]
  3. D. A. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).
  4. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [Crossref]
  5. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
    [Crossref] [PubMed]
  6. L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. Gill, M. Grove, and C.-Y. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” in Integrated Optoelectronic Devices 2006, (International Society for Optics and Photonics, 2006), 612502.
  7. C. Gunn, “10 Gb/s CMOS photonics technology,” in Integrated Optoelectronic Devices 2006, (International Society for Optics and Photonics, 2006), 612501.
  8. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
    [Crossref] [PubMed]
  9. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  10. D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
    [Crossref]
  11. Y. Cai, R. E. Camacho-Aguilera, J. T. Bessette, L. C. Kimerling, and J. Michel, “High n-type doped germanium for electrically pumped Ge laser,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2012), IM3A. 5.
  12. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
    [Crossref] [PubMed]
  13. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
    [Crossref] [PubMed]
  14. J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
    [Crossref]
  15. X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shiraki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), 2014).
    [Crossref]
  16. R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
    [Crossref]
  17. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
    [Crossref] [PubMed]
  18. J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
    [Crossref]
  19. J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
    [Crossref]
  20. J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
    [Crossref]
  21. F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
    [Crossref]
  22. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
    [Crossref]
  23. L. Ding, A. E.-J. Lim, J. T.-Y. Liow, M. B. Yu, and G.-Q. Lo, “Dependences of photoluminescence from P-implanted epitaxial Ge,” Opt. Express 20(8), 8228–8239 (2012).
    [Crossref] [PubMed]

2012 (8)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

L. Ding, A. E.-J. Lim, J. T.-Y. Liow, M. B. Yu, and G.-Q. Lo, “Dependences of photoluminescence from P-implanted epitaxial Ge,” Opt. Express 20(8), 8228–8239 (2012).
[Crossref] [PubMed]

2011 (1)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

2010 (2)

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

2007 (2)

2003 (1)

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

2000 (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

1997 (1)

D. A. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

1982 (1)

K. C. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” Solid-State Circuits, IEEE Journal of 17(2), 275–280 (1982).
[Crossref]

1972 (1)

F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[Crossref]

Ahn, D.

Beals, M.

Bedell, S. W.

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

Bergman, K.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Bessette, J. T.

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Brongersma, M.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Buchenauer, C.

F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[Crossref]

Cai, Y.

Camacho-Aguilera, R.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

Camacho-Aguilera, R. E.

Cannon, D. D.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Cardona, M.

F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[Crossref]

Cerdeira, F.

F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[Crossref]

Chen, J.

Cheng, S.-L.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Ding, L.

Giziewicz, W.

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Hong, C. Y.

Huang, K. C.-Y.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Ishikawa, Y.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Jiang, Q.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Kärtner, F. X.

Kim, J.

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

Kimerling, L. C.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express 20(10), 11316–11320 (2012).
[Crossref] [PubMed]

R. E. Camacho-Aguilera, Y. Cai, J. T. Bessette, L. C. Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Mater. Express 2(11), 1462–1469 (2012).
[Crossref]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref] [PubMed]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Koch, T. L.

Lim, A. E.-J.

Liow, J. T.-Y.

Liu, H.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Liu, J.

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett. 35(5), 679–681 (2010).
[Crossref] [PubMed]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15(7), 3916–3921 (2007).
[Crossref] [PubMed]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Lo, G.-Q.

Loesing, R.

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

Luan, H.-C.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Maurer, S. L.

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

Michel, J.

Miller, D. A.

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

D. A. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

Mohammadi, F.

K. C. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” Solid-State Circuits, IEEE Journal of 17(2), 275–280 (1982).
[Crossref]

Nam, D.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Nishi, Y.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Pan, D.

Patel, N.

Pollak, F. H.

F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[Crossref]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Romagnoli, M.

Roy, A.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Sadana, D. K.

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

Saraswat, K.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Saraswat, K. C.

K. C. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” Solid-State Circuits, IEEE Journal of 17(2), 275–280 (1982).
[Crossref]

Seeds, A.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Sukhdeo, D.

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

Sun, X.

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wada, K.

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Wang, T.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wang, X.

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007).
[Crossref] [PubMed]

Yu, M. B.

Appl. Phys. Lett. (3)

D. Nam, D. Sukhdeo, S.-L. Cheng, A. Roy, K. C.-Y. Huang, M. Brongersma, Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett. 100(13), 131112 (2012).
[Crossref]

J. Kim, S. W. Bedell, and D. K. Sadana, “Multiple implantation and multiple annealing of phosphorus doped germanium to achieve n-type activation near the theoretical limit,” Appl. Phys. Lett. 101(11), 112107 (2012).
[Crossref]

Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett. 82(13), 2044–2046 (2003).
[Crossref]

Electrochem. Solid-State Lett. (1)

J. Kim, S. W. Bedell, S. L. Maurer, R. Loesing, and D. K. Sadana, “Activation of implanted n-type dopants in Ge over the active concentration of 1× 1020 cm− 3 using coimplantation of Sb and P,” Electrochem. Solid-State Lett. 13(1), H12–H15 (2010).
[Crossref]

Int. J. Optoelectron. (1)

D. A. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron. 11, 155–168 (1997).

Nat. Photonics (1)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

F. Cerdeira, C. Buchenauer, F. H. Pollak, and M. Cardona, “Stress-induced shifts of first-order Raman frequencies of diamond-and zinc-blende-type semiconductors,” Phys. Rev. B 5(2), 580–593 (1972).
[Crossref]

Proc. IEEE (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[Crossref]

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. Liu, L. C. Kimerling, and J. Michel, “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semicond. Sci. Technol. 27(9), 094006 (2012).
[Crossref]

Solid-State Circuits, IEEE Journal of (1)

K. C. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on the time delay of VLSI circuits,” Solid-State Circuits, IEEE Journal of 17(2), 275–280 (1982).
[Crossref]

Thin Solid Films (1)

J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, “Ge-on-Si optoelectronics,” Thin Solid Films 520(8), 3354–3360 (2012).
[Crossref]

Other (5)

Y. Cai, R. E. Camacho-Aguilera, J. T. Bessette, L. C. Kimerling, and J. Michel, “High n-type doped germanium for electrically pumped Ge laser,” in Integrated Photonics Research, Silicon and Nanophotonics, (Optical Society of America, 2012), IM3A. 5.

X. Xu, K. Nishida, K. Sawano, T. Maruizumi, and Y. Shiraki, “Resonant photoluminescence from Ge microdisks on Ge-on-insulator,” in 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), 2014).
[Crossref]

M. T. Bohr, “Interconnect scaling-the real limiter to high performance ULSI,” in International Electron Devices Meeting, (Institute Of Electrical & Electronic Engineers, Inc (IEEE), 1995), 241–244.
[Crossref]

L. Kimerling, D. Ahn, A. Apsel, M. Beals, D. Carothers, Y.-K. Chen, T. Conway, D. Gill, M. Grove, and C.-Y. Hong, “Electronic-photonic integrated circuits on the CMOS platform,” in Integrated Optoelectronic Devices 2006, (International Society for Optics and Photonics, 2006), 612502.

C. Gunn, “10 Gb/s CMOS photonics technology,” in Integrated Optoelectronic Devices 2006, (International Society for Optics and Photonics, 2006), 612501.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Bright-field cross-sectional HRTEM images of (a) phosphorous-implanted Ge-on-Si with a dose of 1 × 1015 cm−2 at an energy of 100 keV before annealing and (b) phosphorous-implanted Ge-on-Si at 650°C after annealing for 100 s.
Fig. 2
Fig. 2 SIMS profiles after annealing at various temperatures for (a) P-implantation into undoped Ge-on-Si and (b) P-implantation into in situ doped Ge-on-Si with a dose of 1 × 1015 cm−2 at an energy of 100 keV.
Fig. 3
Fig. 3 (a) PL spectra of P-doped Ge-on-Si after implanting at an energy of 100 keV and a dose of 1.0 × 1015 cm−2. Samples were annealed at various temperatures for 100 s. (b) Comparison of PL intensities of P-doped Ge-on-Si as a function of annealing temperatures.
Fig. 4
Fig. 4 Comparison of PL spectra of P-doped Ge-on-Si as functions of annealing temperature at implantation doses of (a) 4 × 1014 cm−2 and (b) 2 × 1015 cm−2.
Fig. 5
Fig. 5 Variations of sheet resistance and PL intensity of P-doped Ge-on-Si after implantation under various conditions.
Fig. 6
Fig. 6 (a) Raman spectra for the P-implanted Ge-on-Si annealed at various temperatures for fixed durations of 100 s. (b) Raman FWHM and strain as functions of temperature.

Metrics