Abstract

Tellurite glass has emerged as a promising ~2.0 μm laser material owing to its excellent features of supporting efficient mid-infrared emission and easy fiber-pulling over the commonly investigated glasses. In this paper, we report an efficient ~2.0 μm laser output from a new-type of Nd3+/Ho3+ co-doped tungsten tellurite fiber laser by using an ultra-short length fiber of 5 cm upon a 795 nm laser diode. The tellurite fibers have been fabricated by a suction technique with the core and cladding diameters of 32 and 125 μm, respectively. The propagation loss of the fiber is measured to be 4.44 dB/m at 1310 nm by using the cutback method. The large energy transfer coefficient from Nd3+ to Ho3+ (3.8 × 10−40 cm6·s–1) and high gain coefficient of Ho3+: 5I75I8 transition (1.2 cm–1) have confirmed the success of using Nd3+ as sensitizer to realize the ~2.0 μm laser emission of Ho3+. The maximum output power of the laser is obtained to be 12 mW at a center wavelength of 2052 nm with a slope efficiency of 11.2%. The laser threshold is as low as 38 mW, which is around one order of magnitude lower than the previously reported Tm3+/Yb3+ doped tellurite fiber lasers with the similar pump scheme and fiber geometry. The results indicate that the Nd3+/Ho3+ co-doped tungsten tellurite glass fiber laser is a promising laser medium candidate for achieving the ultra-compact and efficient ~2.0 μm laser.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tm3+ and Tm3+-Ho3+co-doped tungsten tellurite glass single mode fiber laser

Kefeng Li, Guang Zhang, Xin Wang, Lili Hu, Peiwen Kuan, Danping Chen, and Meng Wang
Opt. Express 20(9) 10115-10121 (2012)

Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism [Invited]

Sathravada Balaji, Atul D. Sontakke, Ranjan Sen, and Annapurna Kalyandurg
Opt. Mater. Express 1(2) 138-150 (2011)

Ho3+/Yb3+-codoped germanate–tellurite glasses for 2.0  μm emission performance

Ya-Pei Peng, Yanyan Guo, Junjie Zhang, and Long Zhang
Appl. Opt. 53(8) 1564-1569 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [Crossref]
  2. K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
    [Crossref] [PubMed]
  3. X. Wen, G. Tang, J. Wang, X. Chen, Q. Qian, and Z. Yang, “Tm3+ doped barium gallo-germanate glass single-mode fibers for 2.0 μm laser,” Opt. Express 23(6), 7722–7731 (2015).
    [Crossref] [PubMed]
  4. J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
    [Crossref]
  5. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [Crossref]
  6. L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
    [Crossref]
  7. R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
    [Crossref]
  8. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 μm laser,” Opt. Lett. 35(3), 420–422 (2010).
    [Crossref] [PubMed]
  9. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
    [Crossref]
  10. M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
    [Crossref]
  11. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
    [Crossref]
  12. B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
    [Crossref]
  13. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
    [Crossref] [PubMed]
  14. B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
    [Crossref]
  15. G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
    [Crossref] [PubMed]
  16. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
    [Crossref] [PubMed]
  17. J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
    [Crossref]
  18. J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
    [Crossref]
  19. F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
    [Crossref]
  20. W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2976 (2015).
    [Crossref]
  21. Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
    [Crossref]
  22. J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
    [Crossref]
  23. Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
    [Crossref]
  24. G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
    [Crossref]
  25. S. Balaji, A. D. Sontakke, R. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions,” Opt. Mater. Express 1(2), 138–150 (2011).
  26. H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
    [Crossref]
  27. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  28. Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
    [Crossref]
  29. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
    [Crossref]
  30. Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
    [Crossref]
  31. D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).
  32. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
    [Crossref] [PubMed]
  33. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
    [Crossref] [PubMed]
  34. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [Crossref]

2015 (2)

2013 (2)

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

2011 (3)

S. Balaji, A. D. Sontakke, R. Sen, and A. Kalyandurg, “Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions,” Opt. Mater. Express 1(2), 138–150 (2011).

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

2010 (6)

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 μm laser,” Opt. Lett. 35(3), 420–422 (2010).
[Crossref] [PubMed]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
[Crossref]

2009 (4)

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

2008 (5)

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
[Crossref] [PubMed]

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

2007 (2)

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

2004 (1)

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[Crossref]

2003 (1)

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

2002 (1)

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

2000 (2)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

1995 (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

1994 (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

1991 (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

1990 (1)

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
[Crossref]

Animesh, J.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Balaji, S.

Billy, D. O. R.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Binks, D.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
[Crossref] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

Brown, C.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Calveza, L.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Carter, J. N.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
[Crossref]

Chen, D. D.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2976 (2015).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

Chen, D. P.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

Chen, G. R.

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

Chen, G. X.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Chen, X.

Choi, Y. G.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

Clarkson, W. A.

Courrol, L. C.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

Craig, A. E.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

David, J. B.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Fan, J. T.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Fan, Y. Y.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Feng, S. Y.

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Fusari, F.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Gao, G. J.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Gomes, L.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

Gruber, J. B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Hanna, D. C.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
[Crossref]

Heo, J.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

Hu, L.

Hu, L. L.

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Huang, L.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[Crossref]

Huang, L. H.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Hutchinson, J. A.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Jagosich, F. H.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

Jha, A.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[Crossref] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[Crossref]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Jiang, Z. H.

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Joris, L.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Kalyandurg, A.

Kim, J. W.

Kim, Y. S.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

Lagatsky, A.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Li, C. M.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

Li, K.

Li, L. X.

Lim, H. T.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

Lin, H.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

Lousteau, J.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[Crossref] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

Machewirth, D. P.

Mackenzie, J. I.

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Pan, J. J.

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
[Crossref]

Parisi, D.

Paul, H.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Peng, M. Y.

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Pun, E. Y. B.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

Qian, Q.

Qiu, J. R.

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

Ranieri, I. M.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

Richards, B.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[Crossref] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

Sardar, D. K.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Sen, R.

Shen, S.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[Crossref]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Shen, S. X.

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Shin, Y. B.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

Sibbett, W.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Smart, R. G.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
[Crossref]

Snitzer, E.

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Sontakke, A. D.

Tanabe, S.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

Tang, G.

Tarelho, L. V. G.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

Tian, Y.

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Tonelli, M.

Tropper, A. C.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
[Crossref]

Trussell, C. W.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Tsang, Y.

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Efficient ~2 μm Tm3+-doped tellurite fiber laser,” Opt. Lett. 33(4), 402–404 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[Crossref] [PubMed]

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “A Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser,” Opt. Express 16(14), 10690–10695 (2008).
[Crossref] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

Veronesi, S.

Vogel, E. M.

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

Wang, G. N.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Wang, J.

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19(18), 1448–1449 (1994).
[Crossref] [PubMed]

Wang, M.

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Wang, W. C.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2976 (2015).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Wang, X. Y.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

Wen, X.

Wu, F.

Xu, R. R.

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
[Crossref]

Yang, D. L.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Yang, G. F.

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Yang, H. X.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

Yang, Y.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Yang, Z.

Yi, L. X.

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Yu, C. L.

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Yuan, J.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2976 (2015).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

Yuen, H. T.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Zandi, B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Zhang, G.

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

Zhang, J. J.

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
[Crossref]

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

Zhang, L.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Zhang, L. Y.

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

Zhang, Q.

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

Zhang, Q. Y.

W. C. Wang, J. Yuan, L. X. Li, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Broadband 2.7 μm amplified spontaneous emission of Er3+ doped tellurite fibers for mid-infrared laser applications,” Opt. Mater. Express 5(12), 2964–2976 (2015).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

Zhang, X. H.

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Zhou, B.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Zoran, I.

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Electron. Lett. (1)

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser,” Electron. Lett. 26(9), 599–601 (1990).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).
[Crossref]

J. Appl. Phys. (8)

R. R. Xu, J. J. Pan, L. L. Hu, and J. J. Zhang, “2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass,” J. Appl. Phys. 108(4), 043522 (2010).
[Crossref]

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

J. Yuan, S. X. Shen, D. D. Chen, Q. Qian, M. Y. Peng, and Q. Y. Zhang, “Efficient 2.0 μm emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 113(17), 173507 (2013).
[Crossref]

J. Yuan, S. X. Shen, W. C. Wang, M. Y. Peng, Q. Y. Zhang, and Z. H. Jiang, “Enhanced 2.0 μm emission from Ho3+ bridged by Yb3+ in Nd3+/Yb3+/Ho3+ triply doped tungsten tellurite glasses for a diode-pump 2.0 μm laser,” J. Appl. Phys. 114(13), 133506 (2013).
[Crossref]

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
[Crossref]

Q. Zhang, G. R. Chen, G. Zhang, J. R. Qiu, and D. P. Chen, “Infrared luminescence of Tm3+/Yb3+ codoped lanthanum aluminum germanate glasses,” J. Appl. Phys. 107(2), 023102 (2010).
[Crossref]

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in phosphate glass: Er3+, Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
[Crossref]

Y. Tian, R. R. Xu, L. Y. Zhang, L. L. Hu, and J. J. Zhang, “Enhanced effect of Ce3+ ions on 2 μm emission and energy transfer properties in Yb3+/Ho3+ doped fluorophosphate glasses,” J. Appl. Phys. 109(8), 083535 (2011).
[Crossref]

J. Fluoresc. (1)

G. X. Chen, Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm 3+.,” J. Fluoresc. 17(3), 301–307 (2007).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

J. Lumin. (2)

G. J. Gao, G. N. Wang, C. L. Yu, J. J. Zhang, and L. L. Hu, “Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass,” J. Lumin. 129(9), 1042–1047 (2009).
[Crossref]

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128(1), 74–80 (2008).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+-doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
[Crossref]

J. Non-Cryst. Solids (2)

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[Crossref]

J. T. Fan, Y. Y. Fan, Y. Yang, D. P. Chen, L. Calveza, X. H. Zhang, and L. Zhang, “Spectroscopic properties and energy transfer in Yb3+-Ho3+ co-doped germanate glass emitting at 2.0 μm,” J. Non-Cryst. Solids 357(11-13), 2431–2434 (2011).
[Crossref]

Laser Phys. Lett. (1)

B. Richards, A. Jha, Y. Tsang, D. Binks, J. Lousteau, F. Fusari, A. Lagatsky, C. Brown, and W. Sibbett, “Tellurite glass lasers operating close to 2 μm,” Laser Phys. Lett. 7(3), 177–193 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Opt. Mater. (3)

Y. Tian, L. Y. Zhang, S. Y. Feng, R. R. Xu, L. L. Hu, and J. J. Zhang, “2 μm Emission of Ho3+-doped fluorophosphate glass sensitized by Yb3+,” Opt. Mater. 32(11), 1508–1513 (2010).
[Crossref]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[Crossref]

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Proc. SPIE (2)

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser,” Proc. SPIE 6750, 1–9 (2007).
[Crossref]

D. O. R. Billy, A. E. Craig, I. Zoran, H. Paul, H. T. Yuen, J. B. David, L. Joris, and J. Animesh, “Numerical rate equation modeling of a 1.6 μm pumped ~2 μm Tm3+-doped tellurite fibre laser,” Proc. SPIE 6998, 69981T (2008).

Solid State Commun. (1)

M. Wang, L. X. Yi, G. N. Wang, L. L. Hu, and J. J. Zhang, “2 μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation,” Solid State Commun. 149(29-30), 1216–1220 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Simplified energy level diagram and main energy transfer processes between Nd3+ and Ho3+ ions for achieving the ~2.0 μm emission in the Nd3+/Ho3+ co-doped tungsten tellurite glass under 795 nm excitation.
Fig. 2
Fig. 2 The absorption spectra of Nd3+, Ho3+, and Nd3+/Ho3+ co-doped glasses. Inset: magnified absorption spectra of Ho3+ nearby 900 nm.
Fig. 3
Fig. 3 Emission spectra of Ho3+ and Nd3+/Ho3+ co-doped tungsten tellurite glasses. Inset: gain coefficient of the Ho3+: 5I75I8 transition in the current host glass.
Fig. 4
Fig. 4 The measured fiber background loss of Nd3+/Ho3+ co-doped tungsten tellurite fiber. Inset: photomicrograph of the fiber cross section.
Fig. 5
Fig. 5 Schematic of Nd3+/Ho3+ co-doped tungsten tellurite fiber laser experiment configuration.
Fig. 6
Fig. 6 Laser output power as a function of the absorbed pump power. Inset: laser spectrum of a 5-cm-long Nd3+/Ho3+ co-doped tungsten tellurite fiber under excitation of the 795 nm LD.

Tables (3)

Tables Icon

Table 1 The J-O intensity parameters of Ho3+ doped tungsten tellurite glass.

Tables Icon

Table 2 Basic physical parameters of the Nd3+/Ho3+ co-doped tungsten tellurite glass.

Tables Icon

Table 3 Summary of the active fiber length, pump and laser wavelengths, laser threshold, maximum laser output power, and slope efficiency of various RE ions doped tellurite fiber lasers.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G(λ)= N 0 [p σ e (λ)(1p) σ a (λ)]
σ (λ) a = 2.303log I 0 (λ) I(λ) Nl
σ e (λ)= A r λ 4 I(λ) 8π n 2 c I(λ)dλ
C DA = 3c 8 π 4 n 2 g low D g up D σ e D (λ) σ a A (λ)dλ
η=1 τ τ 0
α= 10log( P out P in ) L

Metrics