Abstract

This work investigates the role of precursor gas chemistry, SiH4/NH3/N2, on hydrogen incorporation into PECVD H:SiNx for optical applications. The largest reduction in of N-H bond density is shown to respond from SiH4 flow, indicating that all precursor gases must be optimized for low loss waveguides. A linear correlation of N-H bond density with propagation losses in SiNx waveguides is observed, allowing for a propagation loss to be estimated by N-H bond density without waveguide fabrication. With proper optimization of process parameters, we are able to obtain propagation losses as low as −1.6 dB/cm at 1550 nm without a thermal anneal.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong
Opt. Express 16(25) 20809-20816 (2008)

Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 1.5-μm wavelength

Franco Bruno, Massimo del Guidice, Roberto Recca, and Francesco Testa
Appl. Opt. 30(31) 4560-4564 (1991)

Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette
Opt. Express 16(18) 13509-13516 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
    [Crossref] [PubMed]
  2. D. L. Smith, A. S. Alimonda, and F. J. von Preissig, “Mechanism of SiNxHy deposition from N2–SiH4 plasma,” Journal of Vacuum Science & Technology B 8, 551–557 (1990).
  3. V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
    [Crossref]
  4. W. A. Lanford and M. J. Rand, “The hydrogen content of plasma‐deposited silicon nitride,” J. Appl. Phys. 49(4), 2473–2477 (1978).
    [Crossref]
  5. D. N. Wright, E. S. Marstein, A. Rognmo, and A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Sol. Energy Mater. Sol. Cells 92(9), 1091–1098 (2008).
    [Crossref]
  6. E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
    [Crossref] [PubMed]
  7. K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
    [Crossref]
  8. J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
    [Crossref]
  9. Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4− on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22(18), 21859–21865 (2014).
    [Crossref] [PubMed]
  10. F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
    [Crossref]
  11. O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
    [Crossref]
  12. F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
    [Crossref]
  13. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  14. D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
    [Crossref]
  15. H. Mäckel and R. Lüdemann, “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” J. Appl. Phys. 92(5), 2602–2609 (2002).
    [Crossref]
  16. D. H. Yoon, S. G. Yoon, and Y. T. Kim, “Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films 515(12), 5004–5007 (2007).
    [Crossref]
  17. D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
    [Crossref] [PubMed]
  18. S. Habermehl, “Stress relaxation in Si-rich silicon nitride thin films,” J. Appl. Phys. 83(9), 4672–4677 (1998).
    [Crossref]
  19. G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
    [Crossref]
  20. B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
    [Crossref]
  21. E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
    [Crossref]
  22. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [Crossref] [PubMed]
  23. D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
    [Crossref]
  24. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
    [Crossref]

2015 (1)

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

2014 (2)

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4− on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22(18), 21859–21865 (2014).
[Crossref] [PubMed]

2013 (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

2012 (1)

K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
[Crossref]

2010 (1)

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

2008 (3)

2007 (1)

D. H. Yoon, S. G. Yoon, and Y. T. Kim, “Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films 515(12), 5004–5007 (2007).
[Crossref]

2006 (2)

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

2005 (1)

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

2004 (2)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

2002 (1)

H. Mäckel and R. Lüdemann, “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” J. Appl. Phys. 92(5), 2602–2609 (2002).
[Crossref]

2000 (2)

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

1998 (1)

S. Habermehl, “Stress relaxation in Si-rich silicon nitride thin films,” J. Appl. Phys. 83(9), 4672–4677 (1998).
[Crossref]

1991 (1)

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

1990 (2)

D. L. Smith, A. S. Alimonda, and F. J. von Preissig, “Mechanism of SiNxHy deposition from N2–SiH4 plasma,” Journal of Vacuum Science & Technology B 8, 551–557 (1990).

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

1988 (1)

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

1978 (1)

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma‐deposited silicon nitride,” J. Appl. Phys. 49(4), 2473–2477 (1978).
[Crossref]

Agnihotri, O. P.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Aimez, V.

Alimonda, A. S.

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

D. L. Smith, A. S. Alimonda, and F. J. von Preissig, “Mechanism of SiNxHy deposition from N2–SiH4 plasma,” Journal of Vacuum Science & Technology B 8, 551–557 (1990).

Arnoldbik, W. M.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

Ay, F.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

Aydinli, A.

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

Barradas, N. P.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Batey, J.

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Beaucarne, G.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Bellutti, P.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Bensouda, M.

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Bruyère, J. C.

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Buchaillot, L.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

Bustarret, E.

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Charette, P.

Chen, C. C.

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

Chennupati, J.

K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
[Crossref]

Daldosso, N.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

del Prado, A.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Fouad, K.

K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Goldbach, H. D.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

González-Díaz, G.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Gorin, A.

Grondin, E.

Gujrathi, S. C.

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Habermehl, S.

S. Habermehl, “Stress relaxation in Si-rich silicon nitride thin films,” J. Appl. Phys. 83(9), 4672–4677 (1998).
[Crossref]

Habrard, M. C.

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Han, J. G.

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Hander, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Herth, E.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

Holt, A.

D. N. Wright, E. S. Marstein, A. Rognmo, and A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Sol. Energy Mater. Sol. Cells 92(9), 1091–1098 (2008).
[Crossref]

Hori, M.

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Huang, Y.

Ishikawa, K.

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Jain, S. C.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Jang, G. E.

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

Jaouad, A.

Jeynes, C.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Jie, T.

K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
[Crossref]

Jin, S. B.

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Kaushal, V.

K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
[Crossref]

Kim, D. S.

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

Kim, H.

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

Kim, Y. T.

D. H. Yoon, S. G. Yoon, and Y. T. Kim, “Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films 515(12), 5004–5007 (2007).
[Crossref]

Kompocholis, C.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Kwong, D. L.

Lanford, W. A.

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma‐deposited silicon nitride,” J. Appl. Phys. 49(4), 2473–2477 (1978).
[Crossref]

Lasri, T.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

Legrand, B.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

Lim, K.-P.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Liow, T.-Y.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Lo, G. Q.

Lo, G.-Q.

Lüdemann, R.

H. Mäckel and R. Lüdemann, “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” J. Appl. Phys. 92(5), 2602–2609 (2002).
[Crossref]

Lui, A.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Luo, X.

Mäckel, H.

H. Mäckel and R. Lüdemann, “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” J. Appl. Phys. 92(5), 2602–2609 (2002).
[Crossref]

Mao, S. C.

Marstein, E. S.

D. N. Wright, E. S. Marstein, A. Rognmo, and A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Sol. Energy Mater. Sol. Cells 92(9), 1091–1098 (2008).
[Crossref]

Mártil, I.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Martínez, F. L.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Melchiorri, M.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Mertens, R.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Ng, D. K. T.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Ng, S.-K.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Nijs, J.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Parsons, G. N.

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Pavesi, L.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Poortmans, J.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Poulin, S.

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Pucker, G.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Rand, M. J.

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma‐deposited silicon nitride,” J. Appl. Phys. 49(4), 2473–2477 (1978).
[Crossref]

Ready, S. E.

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

Reehal, H. S.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Rognmo, A.

D. N. Wright, E. S. Marstein, A. Rognmo, and A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Sol. Energy Mater. Sol. Cells 92(9), 1091–1098 (2008).
[Crossref]

Rolland, N.

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

Ruiz-Merino, R.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Sahu, B. B.

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Saleh, A. A.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

San Andrés, E.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Sbrana, F.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

Schropp, R. E. I.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

Shin, K. S.

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

Smith, D. L.

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

D. L. Smith, A. S. Alimonda, and F. J. von Preissig, “Mechanism of SiNxHy deposition from N2–SiH4 plasma,” Journal of Vacuum Science & Technology B 8, 551–557 (1990).

Song, J.

Souk, J. H.

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

Suh, S. J.

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

Sun, X. W.

Szlufcik, J.

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Tan, D. T. H.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Tao, S. H.

Toh, Y.-T.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

van der Werf, C. H. M.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

Verlaan, V.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

von Preissig, F. J.

D. L. Smith, A. S. Alimonda, and F. J. von Preissig, “Mechanism of SiNxHy deposition from N2–SiH4 plasma,” Journal of Vacuum Science & Technology B 8, 551–557 (1990).

Wacker, B.

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

Wang, L.

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

Wang, Q.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Wang, T.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Wright, D. N.

D. N. Wright, E. S. Marstein, A. Rognmo, and A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Sol. Energy Mater. Sol. Cells 92(9), 1091–1098 (2008).
[Crossref]

Xu, Y. L.

Yang, Y.

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Yoon, D. H.

D. H. Yoon, S. G. Yoon, and Y. T. Kim, “Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films 515(12), 5004–5007 (2007).
[Crossref]

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

Yoon, S. G.

D. H. Yoon, S. G. Yoon, and Y. T. Kim, “Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films 515(12), 5004–5007 (2007).
[Crossref]

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

Yota, J.

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Yu, M. B.

ACS Appl. Mater. Interfaces (1)

D. K. T. Ng, Q. Wang, T. Wang, S.-K. Ng, Y.-T. Toh, K.-P. Lim, Y. Yang, and D. T. H. Tan, “Exploring High Refractive Index Silicon-Rich Nitride Films by Low-Temperature Inductively Coupled Plasma Chemical Vapor Deposition and Applications for Integrated Waveguides,” ACS Appl. Mater. Interfaces 7(39), 21884–21889 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutti, and A. Lui, “Propagation losses of silicon nitride waveguides in the near-infrared range,” Appl. Phys. Lett. 86(12), 121111 (2005).
[Crossref]

J. Appl. Phys. (5)

S. Habermehl, “Stress relaxation in Si-rich silicon nitride thin films,” J. Appl. Phys. 83(9), 4672–4677 (1998).
[Crossref]

G. N. Parsons, J. H. Souk, and J. Batey, “Low hydrogen content stoichiometric silicon nitride films deposited by plasma‐enhanced chemical vapor deposition,” J. Appl. Phys. 70(3), 1553–1560 (1991).
[Crossref]

B. B. Sahu, K. S. Shin, S. B. Jin, J. G. Han, K. Ishikawa, and M. Hori, “Effectiveness of plasma diagnostic in ultra high frequency and radio frequency hybrid plasmas for synthesis of silicon nitride film at low temperature,” J. Appl. Phys. 116(13), 134903 (2014).
[Crossref]

H. Mäckel and R. Lüdemann, “Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation,” J. Appl. Phys. 92(5), 2602–2609 (2002).
[Crossref]

W. A. Lanford and M. J. Rand, “The hydrogen content of plasma‐deposited silicon nitride,” J. Appl. Phys. 49(4), 2473–2477 (1978).
[Crossref]

J. Electroceram. (1)

D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, and D. H. Yoon, “Refractive index properties of SiN thin films and fabrication of SiN optical waveguide,” J. Electroceram. 17(2-4), 315–318 (2006).
[Crossref]

J. Electrochem. Soc. (1)

D. L. Smith, A. S. Alimonda, C. C. Chen, S. E. Ready, and B. Wacker, “Mechanism of SiNx Hy Deposition from NH3 - SiH4 Plasma,” J. Electrochem. Soc. 137(2), 614–623 (1990).
[Crossref]

J. Phys. D Appl. Phys. (1)

K. Fouad, V. Kaushal, T. Jie, and J. Chennupati, “Structural, compositional and optical properties of PECVD silicon nitride layers,” J. Phys. D Appl. Phys. 45(44), 445301 (2012).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. Yota, J. Hander, and A. A. Saleh, “A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films,” J. Vac. Sci. Technol. A 18(2), 372–376 (2000).
[Crossref]

Journal of Vacuum Science & Technology B (1)

D. L. Smith, A. S. Alimonda, and F. J. von Preissig, “Mechanism of SiNxHy deposition from N2–SiH4 plasma,” Journal of Vacuum Science & Technology B 8, 551–557 (1990).

Microelectron. Reliab. (1)

E. Herth, B. Legrand, L. Buchaillot, N. Rolland, and T. Lasri, “Optimization of SiNX:H films deposited by PECVD for reliability of electronic, microsystems and optical applications,” Microelectron. Reliab. 50(8), 1103–1106 (2010).
[Crossref]

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Opt. Express (3)

Opt. Mater. (1)

F. Ay and A. Aydinli, “Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Opt. Mater. 26(1), 33–46 (2004).
[Crossref]

Phys. Rev. B (1)

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B 73(19), 195333 (2006).
[Crossref]

Phys. Rev. B Condens. Matter (1)

E. Bustarret, M. Bensouda, M. C. Habrard, J. C. Bruyère, S. Poulin, and S. C. Gujrathi, “Configurational statistics in a-SixNyHz alloys: A quantitative bonding analysis,” Phys. Rev. B Condens. Matter 38(12), 8171–8184 (1988).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

O. P. Agnihotri, S. C. Jain, J. Poortmans, J. Szlufcik, G. Beaucarne, J. Nijs, and R. Mertens, “Advances in low temperature processing of silicon nitride based dielectrics and their applications in surface passivation and integrated optical devices,” Semicond. Sci. Technol. 15(7), R29–R40 (2000).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

D. N. Wright, E. S. Marstein, A. Rognmo, and A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Sol. Energy Mater. Sol. Cells 92(9), 1091–1098 (2008).
[Crossref]

Thin Solid Films (2)

F. L. Martínez, R. Ruiz-Merino, A. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N. P. Barradas, L. Wang, and H. S. Reehal, “Bonding structure and hydrogen content in silicon nitride thin films deposited by the electron cyclotron resonance plasma method,” Thin Solid Films 459(1-2), 203–207 (2004).
[Crossref]

D. H. Yoon, S. G. Yoon, and Y. T. Kim, “Refractive index and etched structure of silicon nitride waveguides fabricated by PECVD,” Thin Solid Films 515(12), 5004–5007 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) FTIR spectra with SiH4 flow ranging from 100sccm to 400sccm. (b) N-H peak, and (c) Si-H peak. NH3 flow held at 115 sccm and N2 flow held at 4000 sccm.

Fig. 2
Fig. 2

Si-H and N-H bond density as estimated from FTIR. NH3 flow held at 115 sccm and N2 flow held at 4000 sccm.

Fig. 3
Fig. 3

(a) Effect of SiH4 flow on deposition rate and uniformity. (b) Effect of SiH4 flow on refractive index measured at 633nm and stress. NH3 flow held at 115 sccm and N2 flow held at 4000 sccm.

Fig. 4
Fig. 4

Effect of NH3 flow with a) deposition rate and uniformity and b) refractive index as measured at 633 nm and stress (MPa). SiH4 flow held at 300 sccm and N2 flow held at 4000 sccm.

Fig. 5
Fig. 5

Si-H, N-H, and H bond density as estimated from FTIR as NH3 flow is varied. SiH4 flow held at 300 sccm and N2 flow held at 4000 sccm.

Fig. 6
Fig. 6

Si-H and N-H bond density as estimated from FTIR as N2 flow is varied. SiH4 flow held at 300 sccm and NH3 flow held at 115 sccm.

Fig. 7
Fig. 7

Example of paperclip loss measurement structures with constant number of waveguide bends, the waveguides in this test structure had lengths of 1.1, 1.7, 2.9 and 6.6 cm.

Fig. 8
Fig. 8

Propagation loss as a function of wavelength for various deposition conditions.

Fig. 9
Fig. 9

The mode profiles of a 1.2 μm (a), 2.0 μm (b), and 3.0 μm (c) wide, 225 nm tall SiNx waveguide which illustrate a reduction in field strength along the etched sidewalls as the waveguide widens. (d) The measured material loss as a function of waveguide width taken at a wavelength of 1.6 µm.

Fig. 10
Fig. 10

N-H bond density as a function of propagation loss, indicating a linear trend of N-H bond density with loss.

Tables (1)

Tables Icon

Table 1 Process Parameters, N-H Bond Density, and Measured Loss for Fabricated Waveguides

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ f = E s h s 2 6R h f (1v)
R= R 1 R 2 ( R 1 R 2 )
[ XH ]= A (XH) α(ω) ω dω = A (XH) I

Metrics