Abstract

Tunable terahertz (THz) wave cells have been demonstrated by using magnetic-controlled birefringence in a randomly aligned liquid crystal (LC) cell embedded with three kinds of thermotropic LCs (5CB, E7 and BNHR). By using the THz time domain spectroscopy, these three LCs have been investigated under different low magnetic fields. Experimental results show that the randomly aligned LCs in 3mm thickness cells still have high birefringence controlled by a low magnetic field in the THz regime. The phase shift of π for BNHR cell is achieved over the entire testing range at 30mT, and the dynamic response process of BNHR under a weak magnetic field has also been investigated. When the initial magnetic field of 5mT is applied, unlike the continuous tunability of the cells filled with 5CB and E7, the BNHR cell has a great phase shift of 1.5π at 0.35THz before reaching the steady state. During that process the refractive index and absorption of BNHR vary with time due to its high viscosity, and a larger magnetic field can significantly shorten the response time. These indicate that the randomly aligned mm-thick LC layer of THz devices can be used as a tunable THz wave retarder with low a driving magnetic field and high phase modulation depth in a broad THz band. Therefore, a simple manufacturing technique and low magnetic control of these randomly aligned LC layers may explore some novel LC based THz devices for spatial light modulation, filtering and tuning tasks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller

Fei Fan, Zhan Guo, Jin-Jun Bai, Xiang-Hui Wang, and Sheng-Jiang Chang
J. Opt. Soc. Am. B 28(4) 697-702 (2011)

Terahertz artificial birefringence and tunable phase shifter based on dielectric metasurface with compound lattice

Yun-Yun Ji, Fei Fan, Meng Chen, Lei Yang, and Sheng-Jiang Chang
Opt. Express 25(10) 11405-11413 (2017)

Polarization-independent 2 pi phase modulation for Terahertz using chiral nematic liquid crystals

Chun-Ta Wang, Chung-Lun Wu, Han-Wei Zhang, Tsung-Hsien Lin, and Chao-Kuei Lee
Opt. Mater. Express 6(7) 2283-2290 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
    [Crossref]
  3. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
    [Crossref]
  4. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  5. C. Zhang and K. Mu, “Applications of terahertz spectroscopy,” in Proceedings of IEEE Conference on 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009). pp. 1–2.
    [Crossref]
  6. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [Crossref] [PubMed]
  7. Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
    [Crossref]
  8. Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
    [Crossref] [PubMed]
  9. G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
    [Crossref]
  10. L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
    [Crossref] [PubMed]
  11. B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
    [Crossref]
  12. J. Liu, P. Li, Y. Chen, X. Song, Q. Mao, Y. Wu, F. Qi, B. Zheng, J. He, H. Yang, Q. Wen, and W. Zhang, “Flexible terahertz modulator based on coplanar-gate graphene field-effect transistor structure,” Opt. Lett. 41(4), 816–819 (2016).
    [Crossref] [PubMed]
  13. J. S. Li, “Tunable focus graphene-based terahertz lens,” Opt. Commun. 359, 268–271 (2016).
    [Crossref]
  14. R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
    [Crossref]
  15. H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009).
    [Crossref]
  16. C. L. Pan and P. Pan, “Recent progress in liquid crystal THz optics,” Proc. SPIE 6135, 61350D (2006).
    [Crossref]
  17. C.-S. Yang, C.-J. Lin, R.-P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C.-L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B 27(9), 1866–1873 (2010).
    [Crossref]
  18. L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
    [Crossref]
  19. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [Crossref] [PubMed]
  20. H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
    [Crossref]
  21. X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
    [Crossref]
  22. Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
    [Crossref] [PubMed]
  23. L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
    [Crossref]
  24. C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
    [Crossref] [PubMed]
  25. C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
    [Crossref]
  26. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
    [Crossref] [PubMed]
  27. C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
    [Crossref] [PubMed]
  28. X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
    [Crossref]
  29. T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
    [Crossref] [PubMed]
  30. C.-T. Wang, C.-L. Wu, H.-W. Zhang, T.-H. Lin, and C.-K. Lee, “Polarization-independent 2 pi phase modulation for Terahertz using chiral nematic liquid crystals,” Opt. Mater. Express 6(7), 2283–2290 (2016).
    [Crossref]
  31. L. Duvillaret, F. Garet, and J. L. Coutaz, “Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy,” Appl. Opt. 38(2), 409–415 (1999).
    [Crossref] [PubMed]
  32. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., (Oxford, New York, 1993)
  33. Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
    [Crossref] [PubMed]
  34. R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
    [Crossref]
  35. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]

2016 (3)

2015 (3)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

T. Sasaki, K. Noda, N. Kawatsuki, and H. Ono, “Universal polarization terahertz phase controllers using randomly aligned liquid crystal cells with graphene electrodes,” Opt. Lett. 40(7), 1544–1547 (2015).
[Crossref] [PubMed]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

2014 (2)

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

2013 (5)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Z. Liu, C. Y. Huang, H. Liu, X. Zhang, and C. Lee, “Resonance enhancement of terahertz metamaterials by liquid crystals/indium tin oxide interfaces,” Opt. Express 21(5), 6519–6525 (2013).
[Crossref] [PubMed]

Y. Wu, X. Ruan, C.-H. Chen, Y. J. Shin, Y. Lee, J. Niu, J. Liu, Y. Chen, K.-L. Yang, X. Zhang, J.-H. Ahn, and H. Yang, “Graphene/liquid crystal based terahertz phase shifters,” Opt. Express 21(18), 21395–21402 (2013).
[Crossref] [PubMed]

Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
[Crossref] [PubMed]

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

2012 (2)

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

2011 (3)

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

2010 (1)

2009 (2)

H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009).
[Crossref]

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

2008 (2)

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

C. J. Lin, Y. T. Li, C. F. Hsieh, R. P. Pan, and C. L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16(5), 2995–3001 (2008).
[Crossref] [PubMed]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (4)

C. L. Pan and P. Pan, “Recent progress in liquid crystal THz optics,” Proc. SPIE 6135, 61350D (2006).
[Crossref]

C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31(8), 1112–1114 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

2002 (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

1999 (1)

Ahn, J.-H.

Ariyawansa, G.

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

Bai, Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Bandyopadhyay, N.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Baraniuk, R. G.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Bhattacharya, P.

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

Chan, W. L.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chang, S.

Charan, K.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Chen, C.-H.

Chen, C.-Y.

C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2 π liquid crystal terahertz phase shifter,” Opt. Express 12(12), 2625–2630 (2004).
[Crossref] [PubMed]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Chen, H.-L.

Chen, J.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Chen, P.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” J. Opt. Soc. Am. B 26(1), 101–106 (2009).
[Crossref]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chen, Y.

Coquillat, D.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Coutaz, J. L.

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Dong, L.

Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
[Crossref] [PubMed]

Duvillaret, L.

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Ferrari, A. C.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Garet, F.

Guo, P.

Guo, W.

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

He, J.

Hsieh, C. F.

Hsieh, C.-F.

Hu, W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Huang, C. Y.

Huang, G.

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Jaroszewicz, L.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

Jia, T.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Jia, X. Q.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Jin, B.

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Jin, B. B.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Jin, B.-B.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Kang, L.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Kawatsuki, N.

Kelly, K. F.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Knap, W.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Kowerdziej, R.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Lee, C.

Lee, C.-K.

Lee, Y.

Li, J. S.

J. S. Li, “Tunable focus graphene-based terahertz lens,” Opt. Commun. 359, 268–271 (2016).
[Crossref]

Li, P.

Li, Y. T.

Liang, L.-J.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Liang, X.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Lin, C. J.

Lin, C.-J.

Lin, T.-H.

Lin, X.

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Lin, X.-W.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lin, Y.-F.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Liu, H.

Liu, J.

Liu, S.-G.

Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
[Crossref] [PubMed]

Liu, Z.

Lombardo, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Lu, Q. Y.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Lu, Y.

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Lu, Y.-N.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Lu, Y.-Q.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Mao, Q.

Mittleman, D. M.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Nagatsuma, T.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

Niu, J.

Noda, K.

Olifierczuk, M.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Ono, H.

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Pan, C. L.

Pan, C.-L.

Pan, P.

C. L. Pan and P. Pan, “Recent progress in liquid crystal THz optics,” Proc. SPIE 6135, 61350D (2006).
[Crossref]

Pan, R. P.

Pan, R.-P.

Parka, J.

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Pellegrini, V.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Perera, A. G. U.

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

Polini, M.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Qi, F.

Qian, H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Qin, Y.

Que, C. T.

Razeghi, M.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Ruan, X.

Sasaki, T.

Shao, G.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Shin, Y. J.

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Slivken, S.

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Song, H. J.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

Song, X.

Takhar, D.

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Tang, T.-T.

Tani, M.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tredicucci, A.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Tsai, T.-R.

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

Vicarelli, L.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Vitiello, M. S.

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Wang, C.-T.

Wang, L.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

Wen, Q.

Wróbel, J.

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

Wu, C.-L.

Wu, H.-Y.

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

Wu, J.

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Wu, J. B.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Wu, P. H.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Wu, P.-H.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Wu, Y.

Wu, Z.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Xu, F.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Yamamoto, K.

Yang, C.-S.

Yang, H.

Yang, K.-L.

Yuan, J.

Zhang, C. H.

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Zhang, H.

Zhang, H.-W.

Zhang, W.

Zhang, X.

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhang, Y. X.

Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
[Crossref] [PubMed]

Zheng, B.

Zheng, Z.

L. Wang, X. Lin, X. Liang, J. Wu, W. Hu, Z. Zheng, B. Jin, Y. Qin, and Y. Lu, “Large birefringence liquid crystal material in terahertz range,” Opt. Mater. Express 2(10), 1314–1319 (2012).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Zheng, Z.-G.

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Zhou, Y.

Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
[Crossref] [PubMed]

Zhu, G.

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

AIP Adv. (2)

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

R. Kowerdziej, M. Olifierczuk, J. Parka, and J. Wróbel, “Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal,” Appl. Phys. Lett. 105(2), 022908 (2014).
[Crossref]

C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83(22), 4497–4499 (2003).
[Crossref]

R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, “Experimental study on terahertz metamaterial embedded in nematic liquid crystal,” Appl. Phys. Lett. 106(9), 092905 (2015).
[Crossref]

W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93(12), 121105 (2008).
[Crossref]

Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “Continuous operation of a monolithic semiconductor terahertz source at room temperature,” Appl. Phys. Lett. 104(22), 221105 (2014).
[Crossref]

Y. X. Zhang, Y. Zhou, L. Dong, and S.-G. Liu, “Terahertz free electron superradiation from mimicking surface plasmons-two electron beams interaction within a 3-mirror quasi-optical cavity,” Appl. Phys. Lett. 102(21), 211104 (2013).
[Crossref] [PubMed]

G. Huang, W. Guo, P. Bhattacharya, G. Ariyawansa, and A. G. U. Perera, “A quantum ring terahertz detector with resonant tunnel barriers,” Appl. Phys. Lett. 94(10), 101115 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, “Electrically tunable room-temperature 2π liquid crystal terahertz phase shifter,” IEEE Photonics Technol. Lett. 18(14), 1488–1490 (2006).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Light Sci. Appl. (1)

L. Wang, X.-W. Lin, W. Hu, G.-H. Shao, P. Chen, L.-J. Liang, B.-B. Jin, P.-H. Wu, H. Qian, Y.-N. Lu, X. Liang, Z.-G. Zheng, and Y.-Q. Lu, “Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes,” Light Sci. Appl. 4(2), e253 (2015).
[Crossref]

Nat. Mater. (2)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, “Graphene field-effect transistors as room-temperature terahertz detectors,” Nat. Mater. 11(10), 865–871 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

J. S. Li, “Tunable focus graphene-based terahertz lens,” Opt. Commun. 359, 268–271 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

C. L. Pan and P. Pan, “Recent progress in liquid crystal THz optics,” Proc. SPIE 6135, 61350D (2006).
[Crossref]

Supercond. Sci. Technol. (1)

B. B. Jin, J. B. Wu, C. H. Zhang, X. Q. Jia, T. Jia, L. Kang, J. Chen, and P. H. Wu, “Enhanced slow light in superconducting electromagnetically induced transparency metamaterials,” Supercond. Sci. Technol. 26(7), 074004 (2013).
[Crossref]

Other (2)

C. Zhang and K. Mu, “Applications of terahertz spectroscopy,” in Proceedings of IEEE Conference on 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IEEE, 2009). pp. 1–2.
[Crossref]

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., (Oxford, New York, 1993)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental equipment of (a) THz-TDS system and tunable static magnetic field by a pair of electromagnets; (b) 3mm LC cell fabricated by fused silica.

Fig. 2
Fig. 2

(a) Time-domain signals of reference, 5CB, E7 and BNHR without magnetic field. (b) The refractive index and (c) the absorption coefficient of three LCs in their isotropic phases.

Fig. 3
Fig. 3

(a) Schematic diagram of the measurements. The experimentally measured refractive index nm of (b) 5CB, (c) E7 and (d) BNHR under the different magnetic fields.

Fig. 4
Fig. 4

(a) Frequency-dependent phase shifts of the three kinds LCs at 30mT. Voltage-dependent phase shifts of (b) 5CB at 0.34THz and 0.61 THz, (c) E7 at 0.23THz and 0.45THz ,and (d) BNHR at 0.2THz and 0.35THz.

Fig. 5
Fig. 5

Time-dependent phase shifts and absorption coefficient for BNHR cell under a fixed magnetic field of (a) 5mT and (b) 15mT at 0.35THz. The solid squares and the solid circle are the phase shift and the absorption coefficient, respectively.

Tables (2)

Tables Icon

Table 1 Physical properties at visible frequency range of the LCs

Tables Icon

Table 2 Optical anisotropy parameters in the THz frequency range of the LCs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( ω ) = 1 + c δ ( ω ) / ω d
α ( ω ) = 2 ln ( t ( ω ) [ n ( ω ) + 1 ] 2 4 n ( ω ) ) d
n i s o 2 = 2 n x ( B ) 2 + n y ( B ) 2 3 = 2 n o 2 + n e 2 3
n e = 3 n i s o 2 2 n o 2
Δ δ ( B ) = 2 π f c Δ n e f f d = 2 π f c [ n y ( B ) n x ( B ) ] d

Metrics