Abstract

Surface processing of silicon using a 400-fs ytterbium fiber laser has been experimentally investigated. Processing was conducted using an average power of 20 W at laser repetition rates from 500 kHz – 2 MHz and scanning speeds up to 2.8 mm/s. Samples showed both effective material removal and detrimental surface artifacts resulting from high surface temperatures during the ablation process. A numerical model has been constructed to simulate the macroscopic surface heating mechanism in femtosecond laser processing. The model validates the experimental results, predicting the observed occurrence of oxidation and melting for un-optimized laser parameters. The surface-heating sensitivity to laser repetition rate, laser fluence, and scanning speed has been comprehensively analyzed, allowing for the first identification of optimized processing conditions to control surface heating and mitigate thermal artifacts in femtosecond laser processing. This work demonstrates a path for predicting deterministic femtosecond laser processing of silicon and other materials.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrating two-temperature and classical heat accumulation models to predict femtosecond laser processing of silicon

Lauren L. Taylor, Ryan E. Scott, and Jie Qiao
Opt. Mater. Express 8(3) 648-658 (2018)

Scaling of black silicon processing time by high repetition rate femtosecond lasers

Giorgio Nava, Roberto Osellame, Roberta Ramponi, and Krishna Chaitanya Vishnubhatla
Opt. Mater. Express 3(5) 612-623 (2013)

Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates

Francesca Di Niso, Caterina Gaudiuso, Teresa Sibillano, Francesco Paolo Mezzapesa, Antonio Ancona, and Pietro Mario Lugarà
Opt. Express 22(10) 12200-12210 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  2. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  3. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
    [Crossref]
  4. D. V. Tran, Y. C. Lam, B. S. Wong, H. Y. Zheng, and D. E. Hardt, “Quantification of thermal energy deposited in silicon by multiple femtosecond laser pulses,” Opt. Express 14(20), 9261–9268 (2006).
    [Crossref] [PubMed]
  5. B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
    [Crossref]
  6. J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
    [Crossref]
  7. Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
    [Crossref] [PubMed]
  8. D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
    [Crossref] [PubMed]
  9. F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  10. W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
    [Crossref] [PubMed]
  11. M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
    [Crossref]
  12. R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
    [Crossref]
  13. M. Vangheluwe, Y. Petit, N. Marquestaut, A. Corcoran, E. Fargin, R. Vallée, T. Cardinal, and L. Canioni, “Nanoparticle generation inside Ag-doped LBG glass by femtosecond laser irradiation,” Opt. Mater. Express 6(3), 743–748 (2016).
    [Crossref]
  14. G. Nava, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Scaling of black silicon processing time by high repetition rate femtosecond lasers,” Opt. Mater. Express 3(5), 612–623 (2013).
    [Crossref]
  15. T. Rublack and G. Seifert, “Femtosecond laser delamination of thin transparent layers from semiconducting substrates,” Opt. Mater. Express 1(4), 543–550 (2011).
    [Crossref]
  16. A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser,” Opt. Express 18(3), 1872–1878 (2010).
    [Crossref] [PubMed]
  17. R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, “Picosecond laser welding of similar and dissimilar materials,” Appl. Opt. 53(19), 4233–4238 (2014).
    [Crossref] [PubMed]
  18. A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
    [Crossref]
  19. A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
    [Crossref]
  20. N. Varkentina, M. Dussauze, A. Royon, M. Ramme, Y. Petit, and L. Canioni, “High repetition rate femtosecond laser irradiation of fused silica studied by Raman spectroscopy,” Opt. Mater. Express 6(1), 79–90 (2016).
    [Crossref]
  21. T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
    [Crossref]
  22. X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
    [Crossref]
  23. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
    [Crossref] [PubMed]
  24. F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
    [Crossref] [PubMed]
  25. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
    [Crossref]
  26. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
    [Crossref] [PubMed]
  27. Z. Cui, Y. Li, W. Wang, C. Lin, and B. Xu, “Effect of environmental media on ablation rate of stainless steel under femtosecond laser multiple raster scans,” Chin. Opt. Lett. 13(1), 011402 (2015).
    [Crossref]
  28. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
    [Crossref]
  29. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
    [Crossref]
  30. G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
    [Crossref]
  31. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
    [Crossref]
  32. J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transf. 49(1-2), 307–316 (2006).
    [Crossref]
  33. B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253(15), 6347–6352 (2007).
    [Crossref]
  34. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40(11), 966–985 (2010).
    [Crossref]
  35. D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
    [Crossref]
  36. A. Rämer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
    [Crossref]
  37. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
    [Crossref]
  38. I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
    [Crossref]
  39. A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
    [Crossref]
  40. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959).
  41. A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
    [Crossref]
  42. C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–421 (1972).
    [Crossref]
  43. P. D. Desai, “Thermodynamic Properties of Iron and Silicon,” J. Phys. Chem. Ref. Data 15(3), 967–983 (1986).
    [Crossref]
  44. J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
    [Crossref]

2016 (4)

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

N. Varkentina, M. Dussauze, A. Royon, M. Ramme, Y. Petit, and L. Canioni, “High repetition rate femtosecond laser irradiation of fused silica studied by Raman spectroscopy,” Opt. Mater. Express 6(1), 79–90 (2016).
[Crossref]

M. Vangheluwe, Y. Petit, N. Marquestaut, A. Corcoran, E. Fargin, R. Vallée, T. Cardinal, and L. Canioni, “Nanoparticle generation inside Ag-doped LBG glass by femtosecond laser irradiation,” Opt. Mater. Express 6(3), 743–748 (2016).
[Crossref]

2015 (7)

Z. Cui, Y. Li, W. Wang, C. Lin, and B. Xu, “Effect of environmental media on ablation rate of stainless steel under femtosecond laser multiple raster scans,” Chin. Opt. Lett. 13(1), 011402 (2015).
[Crossref]

F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
[Crossref] [PubMed]

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

2014 (5)

A. Rämer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
[Crossref]

R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, and A. Feuer, “Heat accumulation during pulsed laser materials processing,” Opt. Express 22(9), 11312–11324 (2014).
[Crossref] [PubMed]

R. M. Carter, J. Chen, J. D. Shephard, R. R. Thomson, and D. P. Hand, “Picosecond laser welding of similar and dissimilar materials,” Appl. Opt. 53(19), 4233–4238 (2014).
[Crossref] [PubMed]

2013 (3)

G. Nava, R. Osellame, R. Ramponi, and K. C. Vishnubhatla, “Scaling of black silicon processing time by high repetition rate femtosecond lasers,” Opt. Mater. Express 3(5), 612–623 (2013).
[Crossref]

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

2012 (3)

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

W. Horn, S. Kroesen, J. Herrmann, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide Bragg gratings in lithium niobate induced by femtosecond laser writing,” Opt. Express 20(24), 26922–26928 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

A. Kiani, K. Venkatakrishnan, and B. Tan, “Direct patterning of silicon oxide on Si-substrate induced by femtosecond laser,” Opt. Express 18(3), 1872–1878 (2010).
[Crossref] [PubMed]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40(11), 966–985 (2010).
[Crossref]

2008 (2)

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16(13), 9443–9458 (2008).
[Crossref] [PubMed]

2007 (1)

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253(15), 6347–6352 (2007).
[Crossref]

2006 (4)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transf. 49(1-2), 307–316 (2006).
[Crossref]

G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
[Crossref]

D. V. Tran, Y. C. Lam, B. S. Wong, H. Y. Zheng, and D. E. Hardt, “Quantification of thermal energy deposited in silicon by multiple femtosecond laser pulses,” Opt. Express 14(20), 9261–9268 (2006).
[Crossref] [PubMed]

2005 (2)

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

2003 (1)

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

2002 (1)

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1986 (1)

P. D. Desai, “Thermodynamic Properties of Iron and Silicon,” J. Phys. Chem. Ref. Data 15(3), 967–983 (1986).
[Crossref]

1972 (1)

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–421 (1972).
[Crossref]

1965 (1)

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

Abramov, A. A.

A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
[Crossref]

Ang, B. C. Y.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Balling, P.

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253(15), 6347–6352 (2007).
[Crossref]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Bauer, F.

Beraun, J. E.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transf. 49(1-2), 307–316 (2006).
[Crossref]

Beresna, M.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Berger, P.

Bian, H.

Bonse, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Brenk, U.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Brikas, M.

G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40(11), 966–985 (2010).
[Crossref]

Bunkin, A. F.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Canioni, L.

Cardinal, T.

Carter, R. M.

Chen, F.

Z. Deng, Q. Yang, F. Chen, X. Meng, H. Bian, J. Yong, C. Shan, and X. Hou, “Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining,” Opt. Lett. 40(9), 1928–1931 (2015).
[Crossref] [PubMed]

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, J.

Chen, J. K.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transf. 49(1-2), 307–316 (2006).
[Crossref]

Chen, W.-J.

Chichkov, B. N.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Christensen, B. H.

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253(15), 6347–6352 (2007).
[Crossref]

Chu, P. L.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Corcoran, A.

Cui, Z.

de Aldana, J. R. V.

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

de Loor, R.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Deal, B. E.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

Deng, Z.

Denz, C.

Desai, P. D.

P. D. Desai, “Thermodynamic Properties of Iron and Silicon,” J. Phys. Chem. Ref. Data 15(3), 967–983 (1986).
[Crossref]

Devillard, R.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Drevinskas, R.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Dussauze, M.

Eaton, S. M.

Fargin, E.

Faucon, M.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Feuer, A.

Foss, S. E.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

Freitag, C.

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Garcia, M. E.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

Garcia-Lechuga, M.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Garcia-Leis, A.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Gecevicius, M.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Glebov, L.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Glebova, L.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Graf, T.

Greif, R.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Grove, A. S.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

Guk, I.

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Guo, C.

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Gupta, M. C.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Hand, D. P.

Hardt, D. E.

Herman, P. R.

Hernandez-Rueda, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Herrmann, J.

Ho, C. Y.

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–421 (1972).
[Crossref]

Ho, S.

Honninger, C.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Horn, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Horn, W.

Hou, X.

Imbrock, J.

Ionin, A. A.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Ivanov, D. S.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Kachel, M.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kazanskii, A. G.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Kazansky, P. G.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Kazlauskiene, V.

G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
[Crossref]

Khenkin, M.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Kiani, A.

Kiedrowski, T.

Kling, R.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Konkov, O. I.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Krainak, M. A.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Kroesen, S.

Krüger, J.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Kudryashov, S. I.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Kuznetsov, A. I.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

Lam, Y. C.

Lednev, V. N.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Leipner, H. S.

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

Lenzner, M.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

Li, J.

Li, X.

A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
[Crossref]

Li, Y.

Liley, P. E.

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–421 (1972).
[Crossref]

Lin, C.

Lipp, V. P.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

Liu, A.

A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
[Crossref]

Liu, T.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Lopez, J.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Markovic, V.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Marquestaut, N.

Matulaitiene, I.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Meissner, H.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Meissner, S.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Meng, X.

Merritt, S.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Michalowski, A.

Mingareev, I.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Miškinis, J.

G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Mottay, E.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Mu, X.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Muchow, M.

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

Nava, G.

Nayak, B. K.

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Ng, M. L.

Niaura, G.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Nolte, S.

F. Bauer, A. Michalowski, T. Kiedrowski, and S. Nolte, “Heat accumulation in ultra-short pulsed scanning laser ablation of metals,” Opt. Express 23(2), 1035–1043 (2015).
[Crossref] [PubMed]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Onuseit, V.

Osellame, R.

Osmani, O.

A. Rämer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

Penning, L.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Pershin, S. M.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Petit, Y.

Powell, R. W.

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–421 (1972).
[Crossref]

Puerto, D.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Raciukaitis, G.

G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
[Crossref]

Rämer, A.

A. Rämer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

Ramme, M.

Ramponi, R.

Resan, B.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Rethfeld, B.

A. Rämer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

Rosenfeld, A.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40(11), 966–985 (2010).
[Crossref]

Royon, A.

Rublack, T.

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

T. Rublack and G. Seifert, “Femtosecond laser delamination of thin transparent layers from semiconducting substrates,” Opt. Mater. Express 1(4), 543–550 (2011).
[Crossref]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Ryasnyanskiy, A.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Sanchez-Cortes, S.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Schade, M.

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Schulz, W.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

Seifert, G.

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

T. Rublack and G. Seifert, “Femtosecond laser delamination of thin transparent layers from semiconducting substrates,” Opt. Mater. Express 1(4), 543–550 (2011).
[Crossref]

Seleznev, L. V.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Shan, C.

Shandybina, G.

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Shephard, J. D.

Siegel, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Sinitsyn, D. V.

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

Smirnov, V.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Solis, J.

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Stephen, M. A.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Stoian, R.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40(11), 966–985 (2010).
[Crossref]

Streltsov, A. M.

A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
[Crossref]

Svirko, Y. P.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Tan, B.

Tan, J. L.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Tay, G. H.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Teh, K. M.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Terukov, E. I.

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

Thomson, R. R.

Thorstensen, J.

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Tran, D. V.

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Tzou, D. Y.

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transf. 49(1-2), 307–316 (2006).
[Crossref]

Vallée, R.

Vangheluwe, M.

Varkentina, N.

Venkatakrishnan, K.

Vestentoft, K.

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253(15), 6347–6352 (2007).
[Crossref]

Vishnubhatla, K. C.

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Wang, W.

Wang, X. C.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Weber, R.

Weingarten, K.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Werth, A.

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

Wiedenmann, M.

Wong, B. S.

Xu, B.

Yakovlev, E.

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

Yang, Q.

Yong, J.

Yu, A. W.

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

Zaouter, Y.

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Zhang, H.

Zheng, H. Y.

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

D. V. Tran, Y. C. Lam, B. S. Wong, H. Y. Zheng, and D. E. Hardt, “Quantification of thermal energy deposited in silicon by multiple femtosecond laser pulses,” Opt. Express 14(20), 9261–9268 (2006).
[Crossref] [PubMed]

Zimmermannn, M.

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Drevinskas, M. Beresna, M. Gecevičius, M. Khenkin, A. G. Kazanskii, I. Matulaitiene, G. Niaura, O. I. Konkov, E. I. Terukov, Y. P. Svirko, and P. G. Kazansky, “Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon,” Appl. Phys. Lett. 106(17), 171106 (2015).
[Crossref]

A. Y. Vorobyev and C. Guo, “Direct observation of enhanced residual thermal energy coupling to solids in femtosecond laser ablation,” Appl. Phys. Lett. 86(1), 011916 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (7)

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process. 111(3), 675–687 (2013).
[Crossref]

A. Horn, I. Mingareev, A. Werth, M. Kachel, and U. Brenk, “Investigations on ultrafast welding of glass-glass and glass-silicon,” Appl. Phys., A Mater. Sci. Process. 93(1), 171–175 (2008).
[Crossref]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76(3), 351–354 (2003).
[Crossref]

G. Račiukaitis, M. Brikas, V. Kazlauskiene, and J. Miškinis, “Doping of silicon with carbon during laser ablation process,” Appl. Phys., A Mater. Sci. Process. 85(4), 445–450 (2006).
[Crossref]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys., A Mater. Sci. Process. 74(1), 19–25 (2002).
[Crossref]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys., A Mater. Sci. Process. 80(2), 237–241 (2005).
[Crossref]

Appl. Surf. Sci. (2)

I. Guk, G. Shandybina, and E. Yakovlev, “Influence of accumulation effects on heating of silicon surface by femtosecond laser pulses,” Appl. Surf. Sci. 353, 851–855 (2015).
[Crossref]

B. H. Christensen, K. Vestentoft, and P. Balling, “Short-pulse ablation rates and the two-temperature model,” Appl. Surf. Sci. 253(15), 6347–6352 (2007).
[Crossref]

Chin. Opt. Lett. (1)

Int. J. Heat Mass Transf. (1)

J. K. Chen, D. Y. Tzou, and J. E. Beraun, “A semiclassical two-temperature model for ultrafast laser heating,” Int. J. Heat Mass Transf. 49(1-2), 307–316 (2006).
[Crossref]

J. Appl. Phys. (4)

T. Rublack, M. Schade, M. Muchow, H. S. Leipner, and G. Seifert, “Proof of damage-free selective removal of thin dielectric coatings on silicon wafers by irradiation with femtosecond laser pulses,” J. Appl. Phys. 112(2), 023521 (2012).
[Crossref]

A. Rämer, O. Osmani, and B. Rethfeld, “Laser damage in silicon: Energy absorption, relaxation, and transport,” J. Appl. Phys. 116(5), 053508 (2014).
[Crossref]

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[Crossref]

J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112(10), 103514 (2012).
[Crossref]

J. Exp. Theor. Phys. (1)

A. A. Ionin, S. I. Kudryashov, L. V. Seleznev, D. V. Sinitsyn, A. F. Bunkin, V. N. Lednev, and S. M. Pershin, “Thermal melting and ablation of silicon by femtosecond laser radiation,” J. Exp. Theor. Phys. 116(3), 347–362 (2013).
[Crossref]

J. Laser Appl. (1)

B. Neuenschwander, B. Jaeggi, M. Zimmermannn, V. Markovic, B. Resan, K. Weingarten, R. de Loor, and L. Penning, “Laser surface structuring with 100 W of average power and sub-ps pulses,” J. Laser Appl. 28(2), 022506 (2016).
[Crossref]

J. Laser Micro Nanoeng. (1)

J. Lopez, M. Faucon, R. Devillard, Y. Zaouter, C. Honninger, E. Mottay, and R. Kling, “Parameters of influence in surface ablation and texturing of metals using high-power ultrafast laser,” J. Laser Micro Nanoeng. 10(1), 1–10 (2015).
[Crossref]

J. Phys. Chem. Ref. Data (2)

C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–421 (1972).
[Crossref]

P. D. Desai, “Thermodynamic Properties of Iron and Silicon,” J. Phys. Chem. Ref. Data 15(3), 967–983 (1986).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Nanotechnology (1)

D. Puerto, M. Garcia-Lechuga, J. Hernandez-Rueda, A. Garcia-Leis, S. Sanchez-Cortes, J. Solis, and J. Siegel, “Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon,” Nanotechnology 27(26), 265602 (2016).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lasers Eng. (2)

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48(10), 940–949 (2010).
[Crossref]

X. C. Wang, H. Y. Zheng, P. L. Chu, J. L. Tan, K. M. Teh, T. Liu, B. C. Y. Ang, and G. H. Tay, “High quality femtosecond laser cutting of alumina substrates,” Opt. Lasers Eng. 48(6), 657–663 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (4)

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B – Condens. Matter Mater. Phys. 73(21), 1–15 (2006).
[Crossref]

Proc. SPIE (2)

M. A. Krainak, A. W. Yu, M. A. Stephen, S. Merritt, L. Glebov, L. Glebova, A. Ryasnyanskiy, V. Smirnov, X. Mu, S. Meissner, and H. Meissner, “Monolithic solid-state lasers for spaceflight,” Proc. SPIE 9342, 93420K (2015).
[Crossref]

A. Liu, A. M. Streltsov, X. Li, and A. A. Abramov, “Laser processing of glass for consumer electronics: opportunities and challenges,” Proc. SPIE 9180, 918004 (2014).
[Crossref]

Quantum Electron. (1)

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40(11), 966–985 (2010).
[Crossref]

Other (1)

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1959).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Surface topography of a femtosecond line ablation on silicon (b) Average line profile of the processed surface, showing ablation and material pileup.
Fig. 2
Fig. 2 Normalized silicon EDS spectra collected for material pileup and unprocessed surface regions. The region of material pileup shows increased oxygen and carbon content.
Fig. 3
Fig. 3 As temperature is increased from 273 to 1685 K (silicon melting point), thermal conductivity decreases by approximately 150 W/(m·K) [42], while specific heat capacity increases by approximately 350 J/(kg·K) [43].
Fig. 4
Fig. 4 Evolution of the maximum temperature of silicon over time due to an incident femtosecond laser pulse train. The initial temperature is 293 K. Local temperature maxima arise due to pulse energy deposition and local temperature minima result from heat diffusion after the pulse. To denotes the oxidation temperature threshold for silicon (973 K [29]) and Tm corresponds to the melting temperature (1685 K).
Fig. 5
Fig. 5 Surface temperature monitored at a location 50 μm along the scan path (100 μm total length). The dotted line marks the time when the peak of an incident pulse is centered at this location. Pulses arriving prior to and after this time impact the temperature via energy deposition and heat exchange.
Fig. 6
Fig. 6 The magnitude of the temperature rise due to an incident pulse, the magnitude of temperature decay due to diffusion, and the surface temperature immediately prior to pulse incidence are shown for 50 incident pulses, using a 500-kHz repetition rate, a 10-μJ pulse energy, a 70-μm focal spot, and a 4-m/s scanning speed. The temperature changes equilibrate after approximately 30 pulses, causing the surface temperature to reach a constant value.
Fig. 7
Fig. 7 Maximum temperature evolutions for (a) 1 MHz, (b) 500 kHz, and (c) 100 kHz repetition rates.
Fig. 8
Fig. 8 Surface temperature evolution over time at the spatial location of incidence of the 26th incident laser pulse along the scan direction for (a) 1 m/s and (b) 4 m/s.
Fig. 9
Fig. 9 Temperature evolutions for a repetition rate of 500 kHz and a scanning speed of (a) 1 m/s or (b) 4 m/s.
Fig. 10
Fig. 10 Maximum temperature evolutions showing the effect of a 2 × increase in fluence achieved by changing either the focal spot size or pulse energy. (a) Reference temperature evolution with 0.26 J/cm2 fluence. (b) Temperature evolution for 0.52 J/cm2 fluence attained by reducing the focal spot from 70 µm to 49.5 µm. (c) Temperature evolution for 0.52 J/cm2 fluence attained by increasing the pulse energy from 10 µJ to 20 µJ, showing increased heat accumulation.

Tables (2)

Tables Icon

Table 1 Simulation Results for Repetition Rate Sensitivity

Tables Icon

Table 2 Simulation Parameters and Results for Testing Fluence Sensitivity

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω= 2A E pulse π w o 2 e 2( ( x x n ) 2 + ( y y n ) 2 ) w o 2 δ( z ).
T= E ρcΔV .
ρc T t = x ( k T x )+ y ( k T y )+ z ( k T z ).

Metrics