Abstract

In this work, we investigate the properties of an organic distributed feedback laser as the concentration of the gain material in the waveguide core is varied across two orders of magnitude, from 5% down to 0.025%. The laser dye DCJTB (4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-9-enyl-vinyl)-4H-pyran) incorporated into a PVK (poly(9-vinylcarbazole)) host matrix provided the gain. The composite layer of PVK:DCJTB was spin-cast onto a silica grating with second order periodicity, and upon nanosecond optical excitation lasing was generated in the wavelength range of 600 nm. The threshold pulse energy for achieving lasing increased as the concentration of DCJTB was reduced, however the threshold excitation density quantified in terms of number of excited molecules per unit area remained nearly constant at 1.3×1013 molecules/cm2. In contrast, the relative slope efficiency for lasing decreased considerably as the gain concentration was reduced. We show that this effect can not be explained by a standard 4-level lasing model, but rather that it is due to optically induced charge separation for the DCJTB molecules situated in the PVK host matrix. Our findings suggest that fast charge separation and long back recombination times can be a significant factor in limiting further reduction of the gain concentration in organic DFB lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser

Sidney S. Yang, Yun-Ching Chang, Pei-Chun Yen, and Ya-Chang Chou
J. Opt. Soc. Am. B 24(8) 1857-1861 (2007)

Material gain concentration quenching in organic dye-doped polymer thin films

Florian Vogelbacher, Xue Zhou, Jinhua Huang, Mingzhu Li, Ke-Jian Jiang, Yanlin Song, Karl Unterrainer, and Rainer Hainberger
Opt. Mater. Express 9(3) 1208-1222 (2019)

Amplified spontaneous emission from DCJTB encapsulated in mesostructured composite silica SBA-15

Dingke Zhang, Zhuojun Duan, Yu Wang, Peng Zhang, and Shijian Chen
Appl. Opt. 55(17) 4736-4740 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik and C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
    [Crossref]
  2. M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
    [Crossref]
  3. C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
    [Crossref]
  4. R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
    [Crossref]
  5. G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
    [Crossref]
  6. G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
    [Crossref]
  7. D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
    [Crossref]
  8. M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
    [Crossref]
  9. T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73(2), 105–109 (2001).
    [Crossref]
  10. X.-L. Zhu, S.-K. Lam, and D. Lo, “Distributed-feedback dye-doped solgel silica lasers,” Appl. Opt. 39(18), 3104–3107 (2000).
    [Crossref]
  11. X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
    [Crossref]
  12. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.
  13. S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
    [Crossref]
  14. G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
    [Crossref]
  15. X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
    [Crossref]
  16. J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
    [Crossref]
  17. W. Horn, S. Kroesen, and C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8,” Appl. Phys. B 117(1), 311–315 (2014).
    [Crossref]
  18. A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17(2), 1435–1440 (2015).
    [Crossref]
  19. A. Taleb, B. T. Chiad, and Z. S. Sadik, “Spectroscopic study of DCM as an active medium for luminescent solar concentrators,” Renewable Energy 30(3), 393–398 (2005).
    [Crossref]
  20. S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
    [Crossref]
  21. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
    [Crossref]
  22. H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
    [Crossref]
  23. S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
    [Crossref]
  24. Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
    [Crossref]

2015 (1)

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17(2), 1435–1440 (2015).
[Crossref]

2014 (3)

W. Horn, S. Kroesen, and C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8,” Appl. Phys. B 117(1), 311–315 (2014).
[Crossref]

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

2013 (2)

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

2009 (1)

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

2007 (1)

S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
[Crossref]

2005 (2)

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

A. Taleb, B. T. Chiad, and Z. S. Sadik, “Spectroscopic study of DCM as an active medium for luminescent solar concentrators,” Renewable Energy 30(3), 393–398 (2005).
[Crossref]

2004 (2)

S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
[Crossref]

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

2003 (2)

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

2001 (2)

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73(2), 105–109 (2001).
[Crossref]

G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
[Crossref]

2000 (1)

1998 (3)

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

1973 (1)

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

1971 (1)

H. Kogelnik and C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

Ade, G.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

Andrew, P.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

Bacher, A.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Bakulin, A. A.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Barnes, W.

G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
[Crossref]

Barnes, W. L.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

Becker, E.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Benstem, T.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Berggren, M.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Boj, P. G.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Brabec, C. J.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Bradley, D.

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

Bradley, D. D.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

Bravo-Abad, J.

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

Buckley, A. R.

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17(2), 1435–1440 (2015).
[Crossref]

Bulovic, V.

S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
[Crossref]

Calzado, E. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Chang, Y.-C.

S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
[Crossref]

Chen, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Chiad, B. T.

A. Taleb, B. T. Chiad, and Z. S. Sadik, “Spectroscopic study of DCM as an active medium for luminescent solar concentrators,” Renewable Energy 30(3), 393–398 (2005).
[Crossref]

Chou, Y.-C.

S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
[Crossref]

Chua, S.-L.

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

Crisp, T.

S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
[Crossref]

Dennler, G.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Denz, C.

W. Horn, S. Kroesen, and C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8,” Appl. Phys. B 117(1), 311–315 (2014).
[Crossref]

Díaz-García,

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Dobbertin, T.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Dodabalapur, A.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Dogariu, A.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Egbe, D. A.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Feldmann, J.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Garvin, H.

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

Gombert, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Green, A. P.

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17(2), 1435–1440 (2015).
[Crossref]

Gupta, R.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Hartmann, S.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Haugeneder, A.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Heeger, A.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Heithecker, D.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Heliotis, G.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

Hilmer, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Hinze, P

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Hinze, P.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

Hoppe, H.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Horn, W.

W. Horn, S. Kroesen, and C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8,” Appl. Phys. B 117(1), 311–315 (2014).
[Crossref]

Howard, I. A.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Jakobs, P.-J.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Johannes, H.-H.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Juarros, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Kallinger, C.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Kang, S. H.

S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
[Crossref]

Kästner, C.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Klinkhammer, S.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Kogelnik, H.

H. Kogelnik and C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

Kowalsky, W.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Krauss, T.

G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
[Crossref]

Kroesen, S.

W. Horn, S. Kroesen, and C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8,” Appl. Phys. B 117(1), 311–315 (2014).
[Crossref]

Kymissis, I.

S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
[Crossref]

Lam, S.-K.

Laquai, F.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Lee, J.

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

Lemmer, U.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Liu, X.

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Lo, D.

Lu, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Mangold, H.

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Mappes, T.

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

McGehee, M.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Merino, S.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Metzdorf, D.

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Müllen, K.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Muslija, A.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Nakamura, M.

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

Nalamasu, O.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Navarro-Fuster, V.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Ni, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Otaduy, D.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Park, J.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Perner, M.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Quintana, J. A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Rabe, T.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

Retolaza, A.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Riedl, T.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Sadik, Z. S.

A. Taleb, B. T. Chiad, and Z. S. Sadik, “Spectroscopic study of DCM as an active medium for luminescent solar concentrators,” Renewable Energy 30(3), 393–398 (2005).
[Crossref]

Samuel, I.

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
[Crossref]

Samuel, I. D. W.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

Schade, W.

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73(2), 105–109 (2001).
[Crossref]

Scharber, M. C.

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Scheel, D.

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73(2), 105–109 (2001).
[Crossref]

Scherf, U.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Schneider, D.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Shank, C.

H. Kogelnik and C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

Shapira, O.

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

Slusher, R.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Soljacic, M.

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

Somekh, S.

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

Spirkl, W.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Srdanov, V.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Stefanou, P.

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

Stevenson, M.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Taleb, A.

A. Taleb, B. T. Chiad, and Z. S. Sadik, “Spectroscopic study of DCM as an active medium for luminescent solar concentrators,” Renewable Energy 30(3), 393–398 (2005).
[Crossref]

Timko, A.

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

Turnbull, G.

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
[Crossref]

Turnbull, G. A.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

Valker, W.

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

Vannahme, C.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Villalvilla, J. M.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Voss, T.

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73(2), 105–109 (2001).
[Crossref]

Vragovic, I.

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Wang, B.

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

Wang, H.

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

Wang, J.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Wang, Y.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Wang, Z.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Weimann, T.

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

Wienhold, T.

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

Woggon, T.

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

Wong, Z. J.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Xia, R.

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

Yang, S. S.

S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
[Crossref]

Yariv, A.

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

Ye, Y.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Yen, H.

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

Yen, P.-C.

S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
[Crossref]

Zhang, X.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Zhen, B.

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

Zhu, H.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Zhu, X.-L.

Adv. Func. Mater. (1)

G. Heliotis, R. Xia, G. A. Turnbull, P. Andrew, W. L. Barnes, I. D. W. Samuel, and D. D. Bradley, “Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One-and Two-Dimensional Distributed Feedback,” Adv. Func. Mater. 14(1), 91–97 (2004).
[Crossref]

Adv. Mater. (2)

C. Kallinger, M. Hilmer, A. Haugeneder, M. Perner, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, K. Müllen, A. Gombert, and W. Valker, “A flexible conjugated polymer laser,” Adv. Mater. 10(12), 920–923 (1998).
[Crossref]

G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-Fullerene bulk-heterojunction solar cells,” Adv. Mater. 21(13), 1323–1338 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

W. Horn, S. Kroesen, and C. Denz, “Two-photon fabrication of organic solid-state distributed feedback lasers in rhodamine 6G doped SU-8,” Appl. Phys. B 117(1), 311–315 (2014).
[Crossref]

D. Schneider, S. Hartmann, T. Benstem, T. Dobbertin, D. Heithecker, D. Metzdorf, E. Becker, T. Riedl, H.-H. Johannes, W. Kowalsky, T. Weimann, J. Wang, and P Hinze, “Wavelength-tunable organic solid-state distributed-feedback laser,” Appl. Phys. B 77(4), 399–402 (2003).
[Crossref]

T. Voss, D. Scheel, and W. Schade, “A microchip-laser-pumped DFB-polymer-dye laser,” Appl. Phys. B 73(2), 105–109 (2001).
[Crossref]

Appl. Phys. Lett. (6)

G. Heliotis, R. Xia, D. Bradley, G. Turnbull, I. Samuel, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003).
[Crossref]

M. Berggren, A. Dodabalapur, R. Slusher, A. Timko, and O. Nalamasu, “Organic solid-state lasers with imprinted gratings on plastic substrates,” Appl. Phys. Lett. 72(4), 410–411 (1998).
[Crossref]

R. Gupta, M. Stevenson, A. Dogariu, M. McGehee, J. Park, V. Srdanov, A. Heeger, and H. Wang, “Low-threshold amplified spontaneous emission in blends of conjugated polymers,” Appl. Phys. Lett. 73(24), 3492–3494 (1998).
[Crossref]

H. Kogelnik and C. Shank, “Stimulated emission in a periodic structure,” Appl. Phys. Lett. 18(4), 152–154 (1971).
[Crossref]

M. Nakamura, A. Yariv, H. Yen, S. Somekh, and H. Garvin, “Optically pumped GaAs surface laser with corrugation feedback,” Appl. Phys. Lett. 22(10), 515–516 (1973).
[Crossref]

S. H. Kang, T. Crisp, I. Kymissis, and V. Bulović, “Memory effect from charge trapping in layered organic structures,” Appl. Phys. Lett. 85(20), 4666–4668 (2004).
[Crossref]

J. Mater. Chem. C (1)

S.-L. Chua, B. Zhen, J. Lee, J. Bravo-Abad, O. Shapira, and M. Soljačić, “Modeling of threshold and dynamics behavior of organic nanostructured lasers,” J. Mater. Chem. C 2(8), 1463–1473 (2014).
[Crossref]

JOSA B (1)

S. S. Yang, Y.-C. Chang, P.-C. Yen, and Y.-C. Chou, “Effects of duty cycle on the characteristics of a composite surface-emitting organic distributed feedback laser,” JOSA B 24(8), 1857–1861 (2007).
[Crossref]

Microelectron. Eng. (1)

J. Wang, T. Weimann, P. Hinze, G. Ade, D. Schneider, T. Rabe, T. Riedl, and W. Kowalsky, “A continuously tunable organic DFB laser,” Microelectron. Eng. 78, 364–368 (2005).
[Crossref]

Opt. Express (2)

X. Liu, S. Klinkhammer, Z. Wang, T. Wienhold, C. Vannahme, P.-J. Jakobs, A. Bacher, A. Muslija, T. Mappes, and U. Lemmer, “Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer,” Opt. Express 21(23), 27,697–27,706 (2013).
[Crossref]

X. Liu, P. Stefanou, B. Wang, T. Woggon, T. Mappes, and U. Lemmer, “Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy,” Opt. Express 21(23), 28,941–28,947 (2013).
[Crossref]

Phys. Chem. Chem. Phys. (2)

A. P. Green and A. R. Buckley, “Solid state concentration quenching of organic fluorophores in PMMA,” Phys. Chem. Chem. Phys. 17(2), 1435–1440 (2015).
[Crossref]

H. Mangold, A. A. Bakulin, I. A. Howard, C. Kästner, D. A. Egbe, H. Hoppe, and F. Laquai, “Control of charge generation and recombination in ternary polymer/polymer: fullerene photovoltaic blends using amorphous and semi-crystalline copolymers as donors,” Phys. Chem. Chem. Phys. 16(38), 20,329–20,337 (2014).
[Crossref]

Renewable Energy (1)

A. Taleb, B. T. Chiad, and Z. S. Sadik, “Spectroscopic study of DCM as an active medium for luminescent solar concentrators,” Renewable Energy 30(3), 393–398 (2005).
[Crossref]

Synthetic Metals (1)

G. Turnbull, T. Krauss, W. Barnes, and I. Samuel, “Tuneable distributed feedback lasing in MEH-PPV films,” Synthetic Metals 121(1–3), 1757–1758 (2001).
[Crossref]

Other (2)

V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and Díaz-García, “Film thickness and grating depth variation in organic second-order distributed feedback lasers,”.

Y. Ye, Z. J. Wong, X. Lu, X. Ni, H. Zhu, X. Chen, Y. Wang, and X. Zhang, “Monolayer excitonic laser,” Nature Photon. (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Absorption and emission spectra of the laser dye DCJTB when doped into a PVK host matrix at a concentration of 0.5% (ww). For the emission measurements, the sample was excited with a λ = 457 nm laser.
Fig. 2
Fig. 2 (A) Schematic of the asymmetric DFB structure in cross-section from bottom to top: silicon subtract, 500 nm thick SiO2 layer with 50 nm deep corrugation etched in, and waveguide core consisting a PVK host matrix doped with the laser dye DCJTB. (B) SEM image of the DFB grating. (C) The dependence of effective refractive index, neff, for the waveguide mode on the PVK:DCJTB layer thickness.
Fig. 3
Fig. 3 Output emission as a function of input energy density for different concentrations of the gain material DCJTB in the PVK host matrix, namely 5%, 2.5%, 1%, 0.5% 0.25%, 0.1%, 0.05% and 0.025%. Excitation and emission were both coupled normal to the plane of the structures.
Fig. 4
Fig. 4 (A) Emission spectra collected from DFB having 0.05% of dye in gain layer, as a function of excitation pulse energy. Note that the height of the lasing peak does not reflect the actual peak intensity since the linewidth is below the resolution of the spectrometer for this measurement which was performed with a 150 g/mm grating. (B) Emission spectrum of the DFB above threshold measured with higher resolution 1800 g/mm grating reveals an instrument limited linewidth of 0.1 nm. (C) Normalized fluorescence from short and long wavelength edges of the bandgap, at 572 nm and 625 nm respectively, are plotted in comparison to the laser line emission. It can be seen that above the threshold, the fluorescence intensity increases sub-linearly as a function of incoming energy, due to the preference for energy to flow into the lasing mode.
Fig. 5
Fig. 5 (A) Lasing threshold as function of DCJTB concentration in the PVK host matrix. The absorbed energy density for achieving threshold was derived from the measured energy fluence by calculating the absorption in the gain layer. (B) Relative slope efficiency of the lasing output above threshold as a function of dye concentration. Red curve is simulation which accounts for possible relaxation into charge separated states, while green curve is simulation with no such relaxation possible. (C) Relative number of charge separated (CS) states after excitation pulse, for pulse energy E = 2Eth.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λ r = n eff Λ
E ( z ) = exp ( q z )
E ( z ) = cos ( r z ) + q r sin ( r z )
E ( z ) = ( cos ( r h ) + q r sin ( r h ) ) exp ( p ( z h ) )
tan ( r ( β ) h ) = r ( β ) q ( β ) + r ( β ) p ( β ) r 2 ( β ) p ( β ) q ( β )
d ϕ d t = 1 τ sp N 2 β F p Γ s 1 τ ph ϕ + σ stim N 2 V g Γ s V ϕ
d N 0 d t = 1 τ sp N 2 F p + σ stim N 2 V g Γ s V ϕ + N 2 τ N R P pump N 0 σ abs pump h f pump N 0 N tot
d N 2 d t = P pump N 0 σ abs pump h f pump N 0 N tot N 2 τ NR σ stim N 2 V g Γ s V ϕ 1 τ sp N 2 F p N 2 τ CS
d N CS d t = N 2 τ CS

Metrics