Abstract

Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed for the fabricated MIM resonator. Excellent thermal stability of the absorber is demonstrated at high operating temperatures (800 °C). The experimental broadband absorption spectra show good agreement with simulations. The resonator with 12 nm top tungsten and 100 nm alumina spacer film shows absorbance above 95% in the range of 650 to 1750 nm. The absorption window is tunable in terms of the center wavelength, bandwidth, and the value of maximum absorbance (~98%) by simple variation of appropriate layer thicknesses. Owing to their flexibility, ease of fabrication and low cost, the presented absorbers have the potential for a wide range of applications, including the use in commonly used infrared bands or absorbers for (solar) thermo-photovoltaic energy conversion, where high absorbance and simultaneously low (thermal) re-radiation is of paramount importance.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband and thermally stable tungsten boride absorber

Ahasanul Haque, Monir Morshed, Ziyuan Li, Kaushal Vora, Li Li, Andrey Miroshnichenko, and Haroldo T. Hattori
J. Opt. Soc. Am. B 36(10) 2744-2749 (2019)

Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks

Yuyin Li, Zhengqi Liu, Houjiao Zhang, Peng Tang, Biao Wu, and Guiqiang Liu
Opt. Express 27(8) 11809-11818 (2019)

Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Yu. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich
Opt. Express 23(19) A1236-A1244 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  2. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  3. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
    [PubMed]
  4. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
    [Crossref] [PubMed]
  5. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  6. P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
    [Crossref]
  7. R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
    [Crossref]
  8. V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
    [Crossref]
  9. M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
    [Crossref]
  10. G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
    [Crossref]
  11. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [Crossref] [PubMed]
  12. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  13. F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
    [Crossref]
  14. S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
    [Crossref]
  15. F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
    [Crossref]
  16. Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
    [Crossref] [PubMed]
  17. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [Crossref] [PubMed]
  18. Y. G. Chushak and L. S. Bartell, “Melting and freezing of gold nanoclusters,” J. Phys. Chem. B 105(47), 11605–11614 (2001).
    [Crossref]
  19. M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
    [Crossref]
  20. M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1 Pt 2), 016603 (2003).
    [Crossref] [PubMed]
  21. S. Roberts, “Optical Properties of Nickel and Tungsten and Their Interpretation According to Drude’s Formula,” Phys. Rev. 114(1), 104–115 (1959).
    [Crossref]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  23. E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
    [Crossref]
  24. Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Advanced Optical Materials, 1–6 (2016, in press).
    [Crossref]
  25. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  26. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [Crossref]
  27. I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).
  28. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
    [Crossref]
  29. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
    [Crossref]
  30. S. Fan, “Photovoltaics: an alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
    [Crossref] [PubMed]
  31. I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
    [Crossref]
  32. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  33. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
    [Crossref] [PubMed]
  34. Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
    [Crossref] [PubMed]
  35. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption In Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
    [Crossref] [PubMed]
  36. C. Hägglund and S. P. Apell, “Resource efficient plasmon-based 2D-photovoltaics with reflective support,” Opt. Express 18(S3Suppl 3), A343–A356 (2010).
    [Crossref] [PubMed]
  37. M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
    [Crossref] [PubMed]
  38. C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
    [Crossref] [PubMed]
  39. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  40. D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
    [Crossref]
  41. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [Crossref] [PubMed]
  42. A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
    [Crossref] [PubMed]
  43. A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
    [Crossref]
  44. P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
    [Crossref] [PubMed]

2016 (2)

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
[Crossref]

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

2015 (10)

P. N. Dyachenko, J. J. do Rosário, E. W. Leib, A. Y. Petrov, M. Störmer, H. Weller, T. Vossmeyer, G. A. Schneider, and M. Eich, “Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres,” Opt. Express 23(19), A1236–A1244 (2015).
[Crossref] [PubMed]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
[Crossref]

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

2014 (8)

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

S. Fan, “Photovoltaics: an alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
[Crossref] [PubMed]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

2013 (2)

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
[Crossref]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

2012 (4)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

2011 (1)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

2008 (2)

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

2003 (1)

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1 Pt 2), 016603 (2003).
[Crossref] [PubMed]

2002 (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

2001 (1)

Y. G. Chushak and L. S. Bartell, “Melting and freezing of gold nanoclusters,” J. Phys. Chem. B 105(47), 11605–11614 (2001).
[Crossref]

2000 (1)

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

1998 (1)

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

1959 (1)

S. Roberts, “Optical Properties of Nickel and Tungsten and Their Interpretation According to Drude’s Formula,” Phys. Rev. 114(1), 104–115 (1959).
[Crossref]

Agert, C.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

Allen, L. H.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Apell, S. P.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption In Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

C. Hägglund and S. P. Apell, “Resource efficient plasmon-based 2D-photovoltaics with reflective support,” Opt. Express 18(S3Suppl 3), A343–A356 (2010).
[Crossref] [PubMed]

Araghchini, M.

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Aydin, K.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Bao, F.

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
[Crossref]

Bartell, L. S.

Y. G. Chushak and L. S. Bartell, “Melting and freezing of gold nanoclusters,” J. Phys. Chem. B 105(47), 11605–11614 (2001).
[Crossref]

Beermann, J.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Bermel, P.

Berrier, A.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Butun, S.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Caylor, J. C.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Chan, D. L. C.

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Chan, W.

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chen, G.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Chen, J.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Chen, X.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Chen, Y.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Cheng, H.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Chiesa, M.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Chirumamilla, M.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

Chushak, Y. G.

Y. G. Chushak and L. S. Bartell, “Melting and freezing of gold nanoclusters,” J. Phys. Chem. B 105(47), 11605–11614 (2001).
[Crossref]

Cui, Y.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Czaplewski, D.

Dai, N.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Deng, H.

Ding, F.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Djurišic, A. B.

do Rosário, J. J.

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

Dyachenko, P. N.

Economou, E. N.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
[Crossref]

Efremov, M. Y.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Eich, M.

Elazar, J. M.

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Esfandyarpour, M.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Fan, S.

S. Fan, “Photovoltaics: an alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
[Crossref] [PubMed]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Feng, H.-P.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gao, J.

Garnett, E. C.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Ghebrebrhan, M.

Giessen, H.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Gong, H.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Greene, J. E.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Gu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Hägglund, C.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption In Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

C. Hägglund and S. P. Apell, “Resource efficient plasmon-based 2D-photovoltaics with reflective support,” Opt. Express 18(S3Suppl 3), A343–A356 (2010).
[Crossref] [PubMed]

Hamam, R.

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Hao, J.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

He, Q.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

He, S.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Huang, S.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Inganäs, O.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Jay Guo, L.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

Jensen, K. F.

Jin, Y.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Kafesaki, M.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
[Crossref]

Kajtár, G.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
[Crossref]

Kasemo, B.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption In Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Khodasevych, I. E.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
[Crossref]

Kocer, H.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Kraemer, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Kwan, A. T.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Lai, S. L.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Leib, E. W.

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, B.

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Li, Q.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Li, X.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Li, Z.

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[Crossref] [PubMed]

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Liu, G.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Liu, X.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Liu, Z.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Ma, Y.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Majewski, M. L.

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

Marton, C. H.

McEnaney, K.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

McGehee, M. D.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Meng, L.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Miao, Z.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Mitchell, A.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
[Crossref]

Mo, L.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Muto, A.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Olson, E. A.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Palacios, E.

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Pan, P.

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Pedersen, K.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Petrov, A. Y.

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Pors, A.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

Poudel, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Qiu, M.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Qu, C.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Rakic, A. D.

Ren, Z.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Rephaeli, E.

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

Roberts, A. S.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

A. S. Roberts, M. Chirumamilla, K. Thilsing-Hansen, K. Pedersen, and S. I. Bozhevolnyi, “Near-infrared tailored thermal emission from wafer-scale continuous-film resonators,” Opt. Express 23(19), A1111–A1119 (2015).
[Crossref] [PubMed]

Roberts, S.

S. Roberts, “Optical Properties of Nickel and Tungsten and Their Interpretation According to Drude’s Formula,” Phys. Rev. 114(1), 104–115 (1959).
[Crossref]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

Rosengarten, G.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
[Crossref]

Rosenmann, D.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sarrazin, M.

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1 Pt 2), 016603 (2003).
[Crossref] [PubMed]

Schiettekatte, F.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Schneider, G. A.

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soljacic, M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18(S3), A314–A334 (2010).
[Crossref] [PubMed]

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Søndergaard, T.

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Soukoulis, C. M.

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
[Crossref]

Stan, L.

Steenhoff, V.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

Sterl, F.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Störmer, M.

Sun, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Theuring, M.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

Thilsing-Hansen, K.

Tittl, A.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Vehse, M.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

Vigneron, J.-P.

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1 Pt 2), 016603 (2003).
[Crossref] [PubMed]

von Maydell, K.

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

Vossmeyer, T.

Walter, R.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Wang, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, L.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
[Crossref]

Wang, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Weiss, T.

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Weller, H.

Wisleder, T.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Xiao, S.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yan, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
[Crossref]

Yan, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, X.

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yeng, Y. X.

Yu, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Zhao, D.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhou, L.

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

Zhu, J.

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

Zhu, P.

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Z. Liu, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu, and G. Gu, “Automatically Acquired Broadband Plasmonic-Metamaterial Black Absorber during the Metallic Film-Formation,” ACS Appl. Mater. Interfaces 7(8), 4962–4968 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), OP98–OP120 (2012).
[PubMed]

Adv. Opt. Mater. (1)

R. Walter, A. Tittl, A. Berrier, F. Sterl, T. Weiss, and H. Giessen, “Large-area low-cost tunable plasmonic perfect absorber in the near infrared by colloidal etching lithography,” Adv. Opt. Mater. 3(3), 398–403 (2015).
[Crossref]

Advanced Optical Materials (2)

V. Steenhoff, M. Theuring, M. Vehse, K. von Maydell, and C. Agert, “Ultrathin resonant-cavity-enhanced solar cells with amorphous germanium absorbers,” Advanced Optical Materials 3(2), 182–186 (2015).
[Crossref]

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Advanced Optical Materials 3(7), 852–881 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104(22), 221107 (2014).
[Crossref]

P. Zhu and L. Jay Guo, “High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack,” Appl. Phys. Lett. 101(24), 241116 (2012).
[Crossref]

F. Ding, L. Mo, J. Zhu, and S. He, “Lithography-free, broadband, omnidirectional, and polarization-insensitive thin optical absorber,” Appl. Phys. Lett. 106(6), 061108 (2015).
[Crossref]

E. Rephaeli and S. Fan, “Tungsten black absorber for solar light with wide angular operation range,” Appl. Phys. Lett. 92(21), 211107 (2008).
[Crossref]

J. Appl. Phys. (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86(1), 487–496 (1999).
[Crossref]

J. Opt. (1)

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15(2), 025006 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

I. H. Malitson and M. J. Dodge, “Refractive-index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972).

J. Phys. Chem. B (1)

Y. G. Chushak and L. S. Bartell, “Melting and freezing of gold nanoclusters,” J. Phys. Chem. B 105(47), 11605–11614 (2001).
[Crossref]

J. Phys. D Appl. Phys. (1)

G. Kajtár, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum,” J. Phys. D Appl. Phys. 49(5), 055104 (2016).
[Crossref]

Laser Photonics Rev. (2)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

F. Ding, Y. Jin, B. Li, H. Cheng, L. Mo, and S. He, “Ultrabroadband strong light absorption based on thin multilayered metamaterials,” Laser Photonics Rev. 8(6), 946–953 (2014).
[Crossref]

Nano Lett. (3)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized Optical Absorption In Ultrathin Films and Its Application to Plasmon-Based Two-Dimensional Photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

S. Fan, “Photovoltaics: an alternative ‘Sun’ for solar cells,” Nat. Nanotechnol. 9(2), 92–93 (2014).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

S. Roberts, “Optical Properties of Nickel and Tungsten and Their Interpretation According to Drude’s Formula,” Phys. Rev. 114(1), 104–115 (1959).
[Crossref]

Phys. Rev. A (1)

D. L. C. Chan, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Emulating one-dimensional resonant Q-matching behavior in a two-dimensional system via Fano resonances,” Phys. Rev. A 74(6), 064901 (2006).
[Crossref]

Phys. Rev. B (3)

M. Zhang, M. Y. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene, and L. H. Allen, “Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements,” Phys. Rev. B 62(15), 10548–10557 (2000).
[Crossref]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

A. S. Roberts, T. Søndergaard, M. Chirumamilla, A. Pors, J. Beermann, K. Pedersen, and S. I. Bozhevolnyi, “Light extinction and scattering from individual and arrayed high-aspect-ratio trenches in metals,” Phys. Rev. B 93(7), 075413 (2016).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(1 Pt 2), 016603 (2003).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

C. Qu, S. Ma, J. Hao, M. Qiu, X. Li, S. Xiao, Z. Miao, N. Dai, Q. He, S. Sun, and L. Zhou, “Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram,” Phys. Rev. Lett. 115(23), 235503 (2015).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

S. He, F. Ding, L. Mo, and F. Bao, “Light absorber with an untra-broad flat band on multi-sized slow-wave hyperbolic metamaterial thin-films,” Prog. Electromagnetics Res. 147, 10 (2014).
[Crossref]

Sci. Rep. (1)

Z. Li, E. Palacios, S. Butun, H. Kocer, and K. Aydin, “Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings,” Sci. Rep. 5, 15137 (2015).
[Crossref] [PubMed]

Other (2)

Z. J. Coppens, I. I. Kravchenko, and J. G. Valentine, “Lithography-Free Large-Area Metamaterials for Stable Thermophotovoltaic Energy Conversion,” Advanced Optical Materials, 1–6 (2016, in press).
[Crossref]

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of an MIM resonator with a protective coating layer. (b) Cross-sectional SEM image of the MIMPC resonator for 100 nm spacer film and 12 nm top W film (the substrate is not seen). (c) Experimental absorption spectra of an MIMPC structure using UV-vis-NIR spectrometer and FTIR spectrometer with a 100 nm top protection layer of Al2O3, a semi-transparent layer consisting of 12 nm W, a 30, 50, 100 and 150 nm Al2O3 spacer layer, and a 100 nm bottom layer of W. The substrate is a piece of Si wafer. Normalized AM1.5 solar spectrum is shown in (c), gray line. Simulated absorption spectra up to near-infrared region are shown in (d).
Fig. 2
Fig. 2 The calculated contour plots of electric field intensity (a) and absorbed power (b) for the resonator (spacer and protective films of a 100 nm Al2O3, and a 12 nm top tungsten film) as a function of wavelength and depth into the sample.
Fig. 3
Fig. 3 Broadband absorption spectra for 50 nm alumina spacer resonator with various (a) top tungsten layer, (c) PC layer film thicknesses. (b and d) Simulation spectra of (a) and (c), respectively. Dimension, unless otherwise specified: Al2O3 Protection layer thickness: 100 nm, W semi-transparent film 12 nm, Al2O3 dielectric spacer 50 nm, W bottom tungsten layer: 100 nm.
Fig. 4
Fig. 4 Absorption spectra of the MIMPC resonator for 50 nm alumina spacer film with the different oblique angles of incident light (0°-60°) for TE (a) and TM (b) polarization.
Fig. 5
Fig. 5 Broadband absorption spectra due to specular and specular plus diffusive (total) reflections, taken from a resonator with spacer, top tungsten and PC layer thicknesses of 50, 12 and 100 nm, respectively.
Fig. 6
Fig. 6 Absorption spectra of an MIMPC resonator with a 50 nm alumina spacer film as fabricated, annealed in air at 600 and 650 °C, and annealed in vacuum at 800 and 850 °C.
Fig. 7
Fig. 7 (a) Secondary ion intensity of W for the depth profile of the MIMPC resonators (as fabricated, annealed at 600 and 800 °C in air and vacuum, respectively) with 50 nm alumina spacer and 100 nm PC films. Cross-sectional images of the resonator cavity as fabricated (b) and, after annealing at 800 °C (c) and 850 °C (d) for 4 hours, where each micrograph shares the same scale bar.

Metrics