Abstract

In this paper we report on the examination of the temperature influence of the effective refractive index and on the dispersion characteristics in air-hole lattice photonic crystal fibers. We use an original method to measure the temperature influence on chromatic dispersion in an optical fiber, where both the thermal expansion of the fiber and its effective group refractive index are taken into account. We present the experimental and modeling results of dispersion characteristics for two types of non-linear fibers, a silica glass fiber and a soft glass fiber in the temperature range from 20°C to 420°C. We measured the zero dispersion wavelength shift of + 0.020 nm/°C for the fused silica fiber and + 0.045 nm/°C for the heavy metal oxide soft glass fiber. Experimental results are in agreement with numerical modeling. Finally, the influence of the temperature-induced change of the dispersion profile on nonlinear performance of the studied fiber structures is investigated numerically. Notable change of parametric gain maxima locations is observed even for small changes of the zero dispersion wavelength in relation to the pump laser wavelength in a four-wave mixing fiber-based wavelength conversion scenario.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally stabilized PCF-based sensor for temperature measurements up to 1000°C

Gianluca Coviello, Vittoria Finazzi, Joel Villatoro, and Valerio Pruneri
Opt. Express 17(24) 21551-21559 (2009)

From molecular precursors in solution to microstructured optical fiber: a Sol-gel polymeric route

Hicham El Hamzaoui, Laurent Bigot, Géraud Bouwmans, Igor Razdobreev, Mohamed Bouazaoui, and Bruno Capoen
Opt. Mater. Express 1(2) 234-242 (2011)

Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

References

  • View by:
  • |
  • |
  • |

  1. G. Agrawal, Nonlinear Fiber Optics, 5th Ed, (Academic Press, 2012).
  2. H. Bach and N. Neuroth, The Properties of Optical Glasses (Springer Verlag, 1995).
  3. N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).
  4. D. Ehrt and W. Vogel, “Radiation effects in glasses,” Nuclear Instruments and Methods in Physics Research Section B 65(1–4), 1–8 (1992).
    [Crossref]
  5. A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
    [Crossref]
  6. A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
    [Crossref]
  7. J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
    [Crossref]
  8. Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).
  9. V. Dangui, H. Kim, M. Digonnet, and G. Kino, “Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers,” Opt. Express 13(18), 6669–6684 (2005).
    [Crossref] [PubMed]
  10. P. S. André, A. N. Pinto, and J. L. Pinto, “Effect of temperature on the single mode fibers chromatic dispersion,” J. Microw. Optoelectron. 3, 64–70 (2004).
  11. T. Kato, Y. Koyano, and M. Nishimura, “Temperature dependence of chromatic dispersion in various types of optical fiber,” Opt. Lett. 25(16), 1156–1158 (2000).
    [Crossref] [PubMed]
  12. L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri, “Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
    [Crossref] [PubMed]
  13. E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
    [Crossref]
  14. G. Ghosh, M. Endo, and T. Iwasalu, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  15. J. Wray and J. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. B 59(6), 774–776 (1969).
    [Crossref]
  16. R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
    [Crossref]
  17. G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
    [Crossref]
  18. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
    [Crossref] [PubMed]
  19. Schott Optical Glass Collection, 2016.
  20. Schott Synthetic Fused Silica, http://www.schott.com/lithotec
  21. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear Fiber Optics Overview,” Chap. 3 in Supercontinuum Generation in Optical Fibers, J. M. Dudley and R. Taylor, eds. (Cambridge University Press, 2010).
  22. M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-ir wavelength conversion based on degenerate four-wave mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
    [Crossref]
  23. A. Barh, S. Ghosh, R. K. Varshney, and B. P. Pal, “An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation,” Opt. Express 21(8), 9547–9555 (2013).
    [Crossref] [PubMed]
  24. L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41(11), 2600–2603 (2016).
    [Crossref] [PubMed]
  25. T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
    [Crossref] [PubMed]
  26. B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
    [Crossref]

2016 (2)

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41(11), 2600–2603 (2016).
[Crossref] [PubMed]

2015 (2)

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri, “Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

2014 (4)

J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

2011 (1)

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

2009 (1)

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-ir wavelength conversion based on degenerate four-wave mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

2007 (1)

2006 (1)

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

2005 (1)

2004 (1)

P. S. André, A. N. Pinto, and J. L. Pinto, “Effect of temperature on the single mode fibers chromatic dispersion,” J. Microw. Optoelectron. 3, 64–70 (2004).

2000 (1)

1994 (1)

G. Ghosh, M. Endo, and T. Iwasalu, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

1992 (1)

D. Ehrt and W. Vogel, “Radiation effects in glasses,” Nuclear Instruments and Methods in Physics Research Section B 65(1–4), 1–8 (1992).
[Crossref]

1979 (1)

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).

1969 (1)

J. Wray and J. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. B 59(6), 774–776 (1969).
[Crossref]

Abramski, K. M.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Abreu-Afonso, J.

J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
[Crossref]

Ahmad, R.

André, P. S.

P. S. André, A. N. Pinto, and J. L. Pinto, “Effect of temperature on the single mode fibers chromatic dispersion,” J. Microw. Optoelectron. 3, 64–70 (2004).

Andrés, M. V.

Andrés, V. M.

J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
[Crossref]

Auguié, B.

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Barh, A.

Beck, G.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

Benoît, A.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Bigot, L.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

Boucon, A.

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Buczynski, R.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Chopornyak, D. B.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).

Cimek, J.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Ciprian, D.

Combes, Y.

Coscelli, E.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri, “Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

Cruz, J.

J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
[Crossref]

Cucinotta, A.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri, “Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

Dangui, V.

Darwich, D.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Dauliat, R.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Díez, A.

L. Velázquez-Ibarra, A. Díez, E. Silvestre, and M. V. Andrés, “Wideband tuning of four-wave mixing in solid-core liquid-filled photonic crystal fibers,” Opt. Lett. 41(11), 2600–2603 (2016).
[Crossref] [PubMed]

J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
[Crossref]

Digonnet, M.

Droques, M.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

Dudley, J. M.

Ehrt, D.

D. Ehrt and W. Vogel, “Radiation effects in glasses,” Nuclear Instruments and Methods in Physics Research Section B 65(1–4), 1–8 (1992).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasalu, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Fedorov, G. M.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).

Février, S.

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-ir wavelength conversion based on degenerate four-wave mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasalu, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Ghosh, S.

Godin, T.

Habert, R.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

Hlubina, P.

Holdynski, Z.

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Iwasalu, T.

G. Ghosh, M. Endo, and T. Iwasalu, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jamier, R.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Jozwik, M.

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Kask, N. E.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).

Kato, T.

Kim, H.

Kino, G.

Klimczak, M.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Koyano, Y.

Krzempek, K.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Kudlinski, A.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

Kujawa, I.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Lantz, E.

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Martynkien, T.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
[Crossref] [PubMed]

Mergo, P.

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Murawski, M.

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Mussot, A.

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Nasilowski, T.

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Neu, J.

J. Wray and J. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. B 59(6), 774–776 (1969).
[Crossref]

Nishimura, M.

Ostrowski, L.

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Pal, B. P.

Pinto, A. N.

P. S. André, A. N. Pinto, and J. L. Pinto, “Effect of temperature on the single mode fibers chromatic dispersion,” J. Microw. Optoelectron. 3, 64–70 (2004).

Pinto, J. L.

P. S. André, A. N. Pinto, and J. L. Pinto, “Effect of temperature on the single mode fibers chromatic dispersion,” J. Microw. Optoelectron. 3, 64–70 (2004).

Poli, F.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri, “Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

Pysz, D.

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Radchenko, V. V.

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).

Rochette, M.

Rosa, L.

Roy, P.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Salin, F.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Schuster, K.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

Selleri, S.

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri, “Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

Silvestre, E.

Sobon, G.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Sotor, J.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Stepien, R.

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Sylvestre, T.

T. Godin, Y. Combes, R. Ahmad, M. Rochette, T. Sylvestre, and J. M. Dudley, “Far-detuned mid-infrared frequency conversion via normal dispersion modulation instability in chalcogenide microwires,” Opt. Lett. 39(7), 1885–1888 (2014).
[Crossref] [PubMed]

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

Szpulak, M.

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-ir wavelength conversion based on degenerate four-wave mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
[Crossref] [PubMed]

Urbanczyk, W.

Varshney, R. K.

Velázquez-Ibarra, L.

Vogel, W.

D. Ehrt and W. Vogel, “Radiation effects in glasses,” Nuclear Instruments and Methods in Physics Research Section B 65(1–4), 1–8 (1992).
[Crossref]

Wray, J.

J. Wray and J. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. B 59(6), 774–776 (1969).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Kudlinski, A. Mussot, R. Habert, and T. Sylvestre, “Widely tunable parametric amplification and pulse train generation by heating a photonic crystal fiber,” IEEE J. Quantum Electron. 47(12), 1514–1518 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Coscelli, R. Dauliat, F. Poli, D. Darwich, A. Cucinotta, S. Selleri, K. Schuster, A. Benoît, R. Jamier, P. Roy, and F. Salin, “Analysis of the modal content into large-mode-area photonic crystal fibers under heat load,” IEEE J. Sel. Top. Quantum Electron. 22(2), 323 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-ir wavelength conversion based on degenerate four-wave mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

B. Auguié, A. Mussot, A. Boucon, E. Lantz, and T. Sylvestre, “Ultralow chromatic dispersion measurement of optical fibers with a tunable fiber laser,” IEEE Photonics Technol. Lett. 18(17), 1825–1827 (2006).
[Crossref]

A. Kudlinski, R. Habert, M. Droques, G. Beck, L. Bigot, and A. Mussot, “Temperature dependence of the zero dispersion wavelength in a photonic crystal fiber,” IEEE Photonics Technol. Lett. 24(6), 431–433 (2012).
[Crossref]

J. Lightwave Technol. (1)

G. Ghosh, M. Endo, and T. Iwasalu, “Temperature-dependent sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

J. Microw. Optoelectron. (1)

P. S. André, A. N. Pinto, and J. L. Pinto, “Effect of temperature on the single mode fibers chromatic dispersion,” J. Microw. Optoelectron. 3, 64–70 (2004).

J. Opt. Soc. Am. B (1)

J. Wray and J. Neu, “Refractive index of several glasses as a function of wavelength and temperature,” J. Opt. Soc. Am. B 59(6), 774–776 (1969).
[Crossref]

Nuclear Instruments and Methods in Physics Research Section B (1)

D. Ehrt and W. Vogel, “Radiation effects in glasses,” Nuclear Instruments and Methods in Physics Research Section B 65(1–4), 1–8 (1992).
[Crossref]

Opt. Eng. (1)

R. Stepien, J. Cimek, D. Pysz, I. Kujawa, M. Klimczak, and R. Buczynski, “„Soft glasses for photonic crystal fibers and microstructured optical components,” Opt. Eng. 53(7), 071815 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

G. Sobon, M. Klimczak, J. Sotor, K. Krzempek, D. Pysz, R. Stepien, T. Martynkien, K. M. Abramski, and R. Buczynski, “Infrared supercontinuum generation in soft-glass photonic crystal fibers pumped at 1560 nm,” Opt. Mater. Express 4(1), 2147–2155 (2014).
[Crossref]

Photonics (1)

J. Abreu-Afonso, A. Díez, J. Cruz, and V. M. Andrés, “Effects of temperature and axial strain on four-wave mixing parametric frequencies in microstructured optical fibers pumped in the normal dispersion regime,” Photonics 1(4), 404–411 (2014).
[Crossref]

Proc. SPIE (1)

Z. Holdynski, M. Jozwik, M. Murawski, L. Ostrowski, P. Mergo, and T. Nasilowski, “Experimental investigation of temperature influence on nonlinear effects in microstructured fibers,” Proc. SPIE 9816, 9816 (2015).

Sov. Jour.of Quant. Electron. (1)

N. E. Kask, V. V. Radchenko, G. M. Fedorov, and D. B. Chopornyak, “Temperature dependence of the absorption coefficient of optical glasses exposed to laser radiation,” Sov. Jour.of Quant. Electron. 9(2), 193–198 (1979).

Other (5)

G. Agrawal, Nonlinear Fiber Optics, 5th Ed, (Academic Press, 2012).

H. Bach and N. Neuroth, The Properties of Optical Glasses (Springer Verlag, 1995).

Schott Optical Glass Collection, 2016.

Schott Synthetic Fused Silica, http://www.schott.com/lithotec

J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear Fiber Optics Overview,” Chap. 3 in Supercontinuum Generation in Optical Fibers, J. M. Dudley and R. Taylor, eds. (Cambridge University Press, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Nonlinear photonic crystal fibers used in this work (SEM images): fused silica fiber NL33B1 (a), and fiber NL24C4 made of lead-bismuth-gallate glass PBG08 (b).
Fig. 2
Fig. 2 Scheme of the developed system used to measure dispersion in optical fibers at high temperatures.
Fig. 3
Fig. 3 Model of temperature induced elongation in an optical fiber fixed at both ends.
Fig. 4
Fig. 4 Shift of the interference fringes in spectral range due to fiber heating (a). Measurement points of the compensation length Δl as a wavelength function for different temperatures (b). All characteristics obtained for a 212 mm long sample of the NL24C4 fiber.
Fig. 5
Fig. 5 Thermal influence on characteristics of the effective group refractive index for the fiber NL33B1 (a). Change of effective group refractive index Neff(λ,T) in relation to characteristic at room temperature (b).
Fig. 6
Fig. 6 Dispersion of the fiber NL33B1 at room temperature (a). Spectral shift of ZDW caused by the fiber heating (b). Dispersion difference in relation to dispersion at room temperature (c).
Fig. 7
Fig. 7 Thermal influence on effective group refractive index in the fiber NL24C4 (a). Change of effective group refractive index Neff(λ,T) with respect to one at the room temperature (b).
Fig. 8
Fig. 8 Dispersion of the fiber NL24C4 at room temperature (a). Spectral shift of ZDW caused by the fiber heating (b). Dispersion difference in relation to dispersion at room temperature (c).
Fig. 9
Fig. 9 Measured and calculated dispersion characteristics of the fiber NL33B1 at room temperature (a). Calculated shift of ZDW induced by increasing the temperature (b). Calculated relative dispersion difference with respect to dispersion at 20°C (c).
Fig. 10
Fig. 10 Influence of temperature on parametric conversion properties of nonlinear fibers: assumed pump wavelength of 1350 nm (vertical dashed line) against measured dispersion profiles of NL24C4 fiber (a), numerical simulations of parametric conversion under pumping with 50 ps pulses (b), corresponding calculated phase-matching profiles (c).

Tables (6)

Tables Icon

Table 1 Geometrical parameters of fused silica PCF NL33B1 and lead-bismuth-gallate PCF NL24C4

Tables Icon

Table 2 Optical and thermal parameters of used glasses

Tables Icon

Table 3 Sellmeier coefficients of fused silica glass and the PBG08 glass, used in this work

Tables Icon

Table 4 Shift of the zero dispersion wavelength in the NL33B1 and NL24C4 fibers, in function of fiber temperature

Tables Icon

Table 5 Constants of formula for dn/dT in vacuum. Valid for 365 nm < λ < 1014 nm and for −100°C ≤ T ≤ + 140°C [20]

Tables Icon

Table 6 The measured and calculated zero dispersion wavelength of the NL33B1 silicate PCF obtained for temperature range of 20°C - 420°C.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N eff (λ)= 2Δl(λ)OP D MO2 OP D MO3 +OP D NDF L fiber +1,
D(λ)= 1 c d N eff (λ) dλ ,
OPL(λ,T)= N eff (λ, T 20°C ) L 20°C + N eff (λ,T>20°C) L T ,
OPL(λ,T)= N eff (λ, T 20°C )( L fiber +ΔL(T) L T )+ N eff (λ,T>20°C) L T .
N eff (λ,T)= 1 L T [ 2Δ l T (λ)+ L fiber OPD(λ)( L fiber +ΔL(T) L T )( 2Δ l 20°C (λ)OPD(λ) L fiber ) ].
ΔL(T)=αΔT L T .
dn(λ,T) dT = n 2 (λ,T)1 2n(λ,T) ( D 0 +2 D 1 ΔT+3 D 2 Δ T 2 + E 0 +2 E 1 ΔT λ 2 λ TK 2 ).
κ=2γ P 0 ( 1 f R )+2 m=1 β 2m (2m)! ω 2m ,

Metrics