Abstract

We study theoretically the magneto-optical properties of suspensions of magnetic nanoparticles within liquid crystalline matrices whose structure has been explored using off-lattice canonical Monte Carlo simulations. We find, in particular, that such systems exhibit a very strong magnetic circular-dichroism signal generated by morphological transformations of the structural motives of magnetic nanoparticles. These occur when the liquid crystalline matrix passes from isotropic to nematic states upon application of an external magnetic field. Moreover, we find that such hybrid magnetic-nanoparticle/liquid-crystalline systems demonstrate strong Faraday effect in the visible regime.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tuning hyper-Rayleigh scattering amplitude on magnetic colloids by means of an external magnetic field

E. S. Gonçalves, R. D. Fonseca, L. De Boni, and A. M. Figueiredo Neto
J. Opt. Soc. Am. B 35(11) 2681-2689 (2018)

Plasmonic waves on a chain of metallic nanoparticles: effects of a liquid-crystalline host

Nicholas A. Pike and David Stroud
J. Opt. Soc. Am. B 30(5) 1127-1134 (2013)

Influence of an external magnetic field in the two-photon absorption coefficient of magnetite nanoparticles in colloids and thin films

D. H. G. Espinosa, C. L. P. Oliveira, and A. M. Figueiredo Neto
J. Opt. Soc. Am. B 35(2) 346-355 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
    [Crossref] [PubMed]
  2. B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).
  3. A. Mertelj, D. Lisjak, and M. Drofenik, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature (London) 504, 237–241 (2013).
    [Crossref]
  4. K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
    [Crossref] [PubMed]
  5. “Private communication with R. Stannarius,”
  6. M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).
  7. M. P. Sharrock and R. E. Bodnar, “Magnetic Materials for Recording: An Overview with Special Emphasis on Particles,” J. Appl. Phys. 57, 3919–3924 (1985).
    [Crossref]
  8. A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
    [Crossref]
  9. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
    [Crossref] [PubMed]
  10. A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
    [Crossref]
  11. H. Yao and Y. Ishikawa, “Finite Size Effect on Magneto-Optical Responses of Chemically Modified Fe3O4 Nanoparticles Studied by MCD Spectroscopy,” J. Phys. Chem. C 119, 13224–13230 (2015).
    [Crossref]
  12. V. Yannopapas and A. G. Vanakaras, “Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices,” ACS Photon. 2, 1030–1038 (2015).
    [Crossref]
  13. S. Odenbach, Magnetoviscous effects in ferrofluids (Springer, 2002).
  14. S. D. Peroukidis, K. Lichtner, and S. H. L. Klapp, “Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices,” Soft Matter 11, 5999–6008 (2015).
    [Crossref] [PubMed]
  15. S. D. Peroukidis and S. H. L. Klapp, “Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae,” Phys. Rev. E 92, 010501 (2015).
    [Crossref]
  16. B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [Crossref]
  17. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [Crossref]
  18. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spec. Rad. Transfer 106, 558–589 (2007).
    [Crossref]
  19. D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
    [Crossref]
  20. D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magnetooptical scattering calculations,” Opt. Express 14, 5746–5754 (2006).
    [Crossref] [PubMed]
  21. A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C: Solid State Phys. 12, 1157–1164 (1979).
    [Crossref]
  22. X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39, 189–192 (1981).
    [Crossref]
  23. S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
    [Crossref] [PubMed]
  24. V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
    [Crossref]
  25. S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
    [Crossref]
  26. O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 1997(56), 8035–8046 (1997).
  27. T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).
  28. V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids (Kluwer, 2004).

2015 (4)

H. Yao and Y. Ishikawa, “Finite Size Effect on Magneto-Optical Responses of Chemically Modified Fe3O4 Nanoparticles Studied by MCD Spectroscopy,” J. Phys. Chem. C 119, 13224–13230 (2015).
[Crossref]

V. Yannopapas and A. G. Vanakaras, “Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices,” ACS Photon. 2, 1030–1038 (2015).
[Crossref]

S. D. Peroukidis, K. Lichtner, and S. H. L. Klapp, “Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices,” Soft Matter 11, 5999–6008 (2015).
[Crossref] [PubMed]

S. D. Peroukidis and S. H. L. Klapp, “Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae,” Phys. Rev. E 92, 010501 (2015).
[Crossref]

2014 (3)

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
[Crossref] [PubMed]

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

2013 (3)

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

A. Mertelj, D. Lisjak, and M. Drofenik, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature (London) 504, 237–241 (2013).
[Crossref]

S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
[Crossref] [PubMed]

2011 (1)

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

2007 (1)

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spec. Rad. Transfer 106, 558–589 (2007).
[Crossref]

2006 (1)

2005 (2)

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[Crossref] [PubMed]

2002 (1)

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

2000 (1)

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

1999 (1)

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

1997 (1)

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 1997(56), 8035–8046 (1997).

1994 (1)

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

1985 (1)

M. P. Sharrock and R. E. Bodnar, “Magnetic Materials for Recording: An Overview with Special Emphasis on Particles,” J. Appl. Phys. 57, 3919–3924 (1985).
[Crossref]

1981 (1)

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39, 189–192 (1981).
[Crossref]

1979 (1)

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C: Solid State Phys. 12, 1157–1164 (1979).
[Crossref]

Alvarado, S. F.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C: Solid State Phys. 12, 1157–1164 (1979).
[Crossref]

Antonov, V.

V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids (Kluwer, 2004).

Asshoff, S. J.

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

Aussenegg, F. A.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Barnakov, Y. A.

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

Begin-Colin, S.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Bodnar, R. E.

M. P. Sharrock and R. E. Bodnar, “Magnetic Materials for Recording: An Overview with Special Emphasis on Particles,” J. Appl. Phys. 57, 3919–3924 (1985).
[Crossref]

Demortiere, A.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Ditlbacher, H.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Donnio, B.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Draine, B. T.

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[Crossref]

B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

Drofenik, M.

A. Mertelj, D. Lisjak, and M. Drofenik, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature (London) 504, 237–241 (2013).
[Crossref]

Droulias, S.

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

Eremin, A.

K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
[Crossref] [PubMed]

Felidj, N.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Felix, R.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Flatau, P. J.

Fleury, B.

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

Fytas, N.

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Guillon, D.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Harmon, B.

V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids (Kluwer, 2004).

Hassdorf, R.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spec. Rad. Transfer 106, 558–589 (2007).
[Crossref]

Ishikawa, Y.

H. Yao and Y. Ishikawa, “Finite Size Effect on Magneto-Optical Responses of Chemically Modified Fe3O4 Nanoparticles Studied by MCD Spectroscopy,” J. Phys. Chem. C 119, 13224–13230 (2015).
[Crossref]

Jordan, A.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Kahn, M. L.

S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
[Crossref] [PubMed]

Kallos, E.

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Katsonis, N.

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

Klapp, S. H. L.

S. D. Peroukidis, K. Lichtner, and S. H. L. Klapp, “Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices,” Soft Matter 11, 5999–6008 (2015).
[Crossref] [PubMed]

S. D. Peroukidis and S. H. L. Klapp, “Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae,” Phys. Rev. E 92, 010501 (2015).
[Crossref]

Klein, S.

K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
[Crossref] [PubMed]

Krenn, J. R.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Kyrimi, V.

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Lamprecht, B.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Leitner, A.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Levy, O.

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 1997(56), 8035–8046 (1997).

Lichtner, K.

S. D. Peroukidis, K. Lichtner, and S. H. L. Klapp, “Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices,” Soft Matter 11, 5999–6008 (2015).
[Crossref] [PubMed]

Lisjak, D.

A. Mertelj, D. Lisjak, and M. Drofenik, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature (London) 504, 237–241 (2013).
[Crossref]

Marty, J-D

S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
[Crossref] [PubMed]

Matt, B.

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

May, K.

K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
[Crossref] [PubMed]

Mertelj, A.

A. Mertelj, D. Lisjak, and M. Drofenik, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature (London) 504, 237–241 (2013).
[Crossref]

Mingotaud, C.

S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
[Crossref] [PubMed]

Odenbach, S.

S. Odenbach, Magnetoviscous effects in ferrofluids (Springer, 2002).

Okuno, T.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

Ono, T.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

Panissod, P.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Park, S. Y.

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[Crossref] [PubMed]

Peroukidis, S. D.

S. D. Peroukidis and S. H. L. Klapp, “Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae,” Phys. Rev. E 92, 010501 (2015).
[Crossref]

S. D. Peroukidis, K. Lichtner, and S. H. L. Klapp, “Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices,” Soft Matter 11, 5999–6008 (2015).
[Crossref] [PubMed]

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

Photinos, D. J.

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Pichon, B. P.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Pondman, K. M.

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

Pourroy, G.

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Salerno, M.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Saliba, S.

S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
[Crossref] [PubMed]

Scharf, T.

T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).

Schider, G.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Schiestel, T.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Schirra, H.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Schlegel, A.

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C: Solid State Phys. 12, 1157–1164 (1979).
[Crossref]

Schmidt, H.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Schoenes, J.

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39, 189–192 (1981).
[Crossref]

Scholz, R.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Scott, B. L.

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

Sharrock, M. P.

M. P. Sharrock and R. E. Bodnar, “Magnetic Materials for Recording: An Overview with Special Emphasis on Particles,” J. Appl. Phys. 57, 3919–3924 (1985).
[Crossref]

Shigeto, K.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

Shinjo, T.

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

Smith, D. A.

D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magnetooptical scattering calculations,” Opt. Express 14, 5746–5754 (2006).
[Crossref] [PubMed]

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

Stannarius, R.

K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
[Crossref] [PubMed]

Stokes, K. L.

D. A. Smith and K. L. Stokes, “Discrete dipole approximation for magnetooptical scattering calculations,” Opt. Express 14, 5746–5754 (2006).
[Crossref] [PubMed]

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

Stroud, D.

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[Crossref] [PubMed]

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 1997(56), 8035–8046 (1997).

ten Haken, B.

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

Vanakaras, A. G.

V. Yannopapas and A. G. Vanakaras, “Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices,” ACS Photon. 2, 1030–1038 (2015).
[Crossref]

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Wachter, P.

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39, 189–192 (1981).
[Crossref]

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C: Solid State Phys. 12, 1157–1164 (1979).
[Crossref]

White, S. A.

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

Wust, P.

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

Yannopapas, V.

V. Yannopapas and A. G. Vanakaras, “Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices,” ACS Photon. 2, 1030–1038 (2015).
[Crossref]

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Yao, H.

H. Yao and Y. Ishikawa, “Finite Size Effect on Magneto-Optical Responses of Chemically Modified Fe3O4 Nanoparticles Studied by MCD Spectroscopy,” J. Phys. Chem. C 119, 13224–13230 (2015).
[Crossref]

Yaresko, A.

V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids (Kluwer, 2004).

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spec. Rad. Transfer 106, 558–589 (2007).
[Crossref]

Zhang, X.

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39, 189–192 (1981).
[Crossref]

ACS Photon. (1)

V. Yannopapas and A. G. Vanakaras, “Strong Magnetochiral Dichroism in Suspensions of Magnetoplasmonic Nanohelices,” ACS Photon. 2, 1030–1038 (2015).
[Crossref]

Angew. Chem. Int. Ed. (1)

B. Matt, K. M. Pondman, S. J. Asshoff, B. ten Haken, B. Fleury, and N. Katsonis, “Soft Magnets from the Self-Organization of Magnetic Nanoparticles in Twisted Liquid Crystals,” Angew. Chem. Int. Ed. 53, 12446–12450 (2014).

Astrophys. J. (1)

B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[Crossref]

J. Appl. Phys. (2)

M. P. Sharrock and R. E. Bodnar, “Magnetic Materials for Recording: An Overview with Special Emphasis on Particles,” J. Appl. Phys. 57, 3919–3924 (1985).
[Crossref]

D. A. Smith, Y. A. Barnakov, B. L. Scott, S. A. White, and K. L. Stokes, “Magneto-optical spectra of closely-spaced magnetite nanoparticles,” J. Appl. Phys. 97, 10M504 (2005).
[Crossref]

J. Magnetism. Magn. Mater. (1)

A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix, “Endocytosis of Dextran and Silan-Coated Magnetite Nanoparticles and the Effect of Intracellular Hyperthermia on Human Mammary Carcinoma Cells in vitro,” J. Magnetism. Magn. Mater. 194, 185–196 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. C: Solid State Phys. (1)

A. Schlegel, S. F. Alvarado, and P. Wachter, “Optical properties of magnetite (Fe3O4),” J. Phys. C: Solid State Phys. 12, 1157–1164 (1979).
[Crossref]

J. Phys. Chem. C (1)

H. Yao and Y. Ishikawa, “Finite Size Effect on Magneto-Optical Responses of Chemically Modified Fe3O4 Nanoparticles Studied by MCD Spectroscopy,” J. Phys. Chem. C 119, 13224–13230 (2015).
[Crossref]

J. Quant. Spec. Rad. Transfer (1)

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spec. Rad. Transfer 106, 558–589 (2007).
[Crossref]

Langmuir (1)

K. May, R. Stannarius, S. Klein, and A. Eremin, “Electric-Field-Induced Phase Separation and Homogenization Dynamics in Colloidal Suspensions of Dichroic Rod-Shaped Pigment Particle,” Langmuir 30, 7070–7076 (2014).
[Crossref] [PubMed]

Liq. Cryst. (1)

S. D. Peroukidis, V. Yannopapas, A. G. Vanakaras, S. Droulias, and D. J. Photinos, “Plasmonic response of ordered arrays of gold nanorods immersed within a nematic liquid crystal,” Liq. Cryst. 41, 1430–1435 (2014).
[Crossref]

Nanoscale (2)

S. Saliba, C. Mingotaud, M. L. Kahn, and J-D Marty, “Liquid crystalline thermotropic and lyotropic nanohybrids,” Nanoscale 5, 6641 (2013).
[Crossref] [PubMed]

A. Demortiere, P. Panissod, B. P. Pichon, G. Pourroy, D. Guillon, B. Donnio, and S. Begin-Colin, “Size-dependent properties of magnetic iron oxide nanocrystals,” Nanoscale 3, 225–232 (2011).
[Crossref]

Nature (London) (1)

A. Mertelj, D. Lisjak, and M. Drofenik, “Ferromagnetism in suspensions of magnetic platelets in liquid crystal,” Nature (London) 504, 237–241 (2013).
[Crossref]

Opt. Express (1)

Opto-Electron. Rev. (1)

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. A. Aussenegg, “Plasmon Polaritons in Metal Nanostructures: The Optoelectronic Route to Nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Phys. Rev. B (1)

O. Levy and D. Stroud, “Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers,” Phys. Rev. B 1997(56), 8035–8046 (1997).

Phys. Rev. E (1)

S. D. Peroukidis and S. H. L. Klapp, “Spontaneous ordering of magnetic particles in liquid crystals: From chains to biaxial lamellae,” Phys. Rev. E 92, 010501 (2015).
[Crossref]

Phys. Rev. Lett. (1)

S. Y. Park and D. Stroud, “Surface-Enhanced Plasmon Splitting in a Liquid-Crystal-Coated Gold Nanoparticle,” Phys. Rev. Lett. 94, 217401 (2005).
[Crossref] [PubMed]

Phys. Stat. Solidi A (1)

V. Yannopapas, N. Fytas, V. Kyrimi, E. Kallos, A. G. Vanakaras, and D. J. Photinos, “Light scattering by a metallic nanoparticle coated with a nematic liquid crystal,” Phys. Stat. Solidi A 210, 335–340 (2013).
[Crossref]

Science (1)

T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, “Magnetic vortex core observation in circular dots of permalloy,” Science 289, 930–932 (2000).
[Crossref] [PubMed]

Soft Matter (1)

S. D. Peroukidis, K. Lichtner, and S. H. L. Klapp, “Tunable structures of mixtures of magnetic particles in liquid-crystalline matrices,” Soft Matter 11, 5999–6008 (2015).
[Crossref] [PubMed]

Solid State Commun. (1)

X. Zhang, J. Schoenes, and P. Wachter, “Kerr-effect and dielecric tensor elements of magnetite (Fe3O4) between 0.5 and 4.3 eV,” Solid State Commun. 39, 189–192 (1981).
[Crossref]

Other (4)

T. Scharf, Polarized Light in Liquid Crystals and Polymers (Wiley, 2007).

V. Antonov, B. Harmon, and A. Yaresko, Electronic Structure and Magneto-Optical Properties of Solids (Kluwer, 2004).

S. Odenbach, Magnetoviscous effects in ferrofluids (Springer, 2002).

“Private communication with R. Stannarius,”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Representative simulation snapshots for mixtures with σs = 1σ in the absence of external magnetic field: (a) Isotropic and (b) nematic phase. In the bottom parts only the MNPs are shown for clarity. The nematic directors of the species are also indicated.
Fig. 2
Fig. 2 Representative simulation snapshots for mixtures with σs = 1σ that are in the I-state (when the external magnetic field is off) and in the N-state (field-on): (a) [(T, ρ) = (1.1,0.34)] field-off S ≃ 0.0 (b) [(T, ρ) = (1.1,0.34)] field-on S ≃ 0.4 (c) [(T, ρ) = (2.2,0.40)] field-off S ≃ 0.0 (d) [(T, ρ) = (2.2,0.40)] field-on S ≃ 0.6.
Fig. 3
Fig. 3 (a) Red line: magnetochiral dichroism (MCD) signal for the hypothetical case where the configuration of Fig. 2(a) is not modified under the action of the magnetic field and the MNPs remain at the same positions (see inset). Black lines: MCD signal for the actual case where the configuration of Fig. 2(a) undergoes structural transformation to the configuration of Fig. 2(b) under the action of the magnetic field (see inset). (b) The same as (a) but for the configurations of Fig. 2(c) and 2(d), respectively. The magnetite MNPs have 5 nm radius.
Fig. 4
Fig. 4 Azimuth and ellipticity angles corresponding to Faraday rotation for (a) the system of Fig. 2(b) and 2(b) the system of Fig. 2(d) (also shown in the insets).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P i = α ˜ i E i
E i = E i n c , i + i i A i j P j
A i j = exp ( i k r i j ) r i j [ k 2 ( r ^ i j r ^ i j 1 3 ) + i k r i j 1 r i j 2 ( 3 r ^ i j r ^ i j 1 3 ) ] , i j
j = 1 N A i j P j = E i n c , i
A i j = [ α ˜ i ] 1 .
α ˜ = V s 2 ε h ; + ε h ; 4 π [ ε ˜ s ε ˜ h 1 3 ] [ ε ˜ s + 2 ε ˜ h 1 3 ] 1 .
ε ˜ s = ( ε x x i Q m z i Q m y i Q m z ε y y i Q m x i Q m y i Q m x ε z z )
ε ˜ h = ( ε 0 0 0 ε 0 0 0 ε )
C s c = 4 π k | E i n c | 2 i = 1 N [ 2 3 k 3 | P i | 2 ( P i E self , i * ) ]
C e x t = 4 π k | E i n c | 2 i = 1 N ( P i E i n c , i * )
C a b s = 4 π k | E i n c | 2 i = 1 N [ ( P i E i * ) 2 3 k 3 | P i | 2 ]
θ + i η = π k E 0 i = 1 N ( P i L P i R ) exp ( i k z ^ r i )
P i L , R = P i e ^ L , R *
e ^ L , R = 1 2 ( x ^ ± i y ^ )
C D = C a b s R C P C a b s L C P
M C D = C D ( H ) C D ( H = 0 ) .

Metrics