Abstract

A novel and versatile strategy for the convenient synthesis of mono-dispersed Ag2S@Ag hybrid nano-particles is developed by simply using laser ablation of Ag target in thioaetamide (TAA) solution. The as-prepared Ag2S@Ag nano-particles exhibit superior adsorption performance for the removal of methyl blue (MB) and methyl orange (MO) from wastewater. Most importantly, without any centrifugal process, the new adsorbents can be removed from solutions easily by filters after adsorbing dyes, since the Ag2S@Ag nano-particles are agglomerated and deposited on the bottom. We demonstrated that the excellent features are highly related to Ag structures in the Ag2S@Ag nano-particles. The unique excited and polarized Ag species with positive charge regions enable the Ag2S@Ag nano-particles to have much more active sites as adsorption sites. Then, it will result in the generation of strong ionic bounds via electron-static interaction between positive active site of the adsorbent and negative charge of the dye molecules. Our results provide a breakthrough in the complicated process including the removal of adsorbents that arises from the separate process after adsorption of organic contaminants. Thus, these findings are of great significance for the practical application in water purification.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced convenient synthesis of porous Cu2O@CuO nanocomposites with excellent adsorption of methyl blue solution

Tiejun Wang, Dameng Wang, Hua Zhang, Xuelin Wang, and Ming Chen
Opt. Mater. Express 7(3) 924-931 (2017)

Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI)

Dameng Wang, Hua Zhang, Lijuan Li, Ming Chen, and Xiangdong Liu
Opt. Mater. Express 6(4) 1306-1312 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ajji and A. M. Ali, “Adsorption of methyl violet and brilliant blue onto poly (vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid,” Nucl. Instrum. Methods. Phys. Res. Sect B 265(1), 362–365 (2007).
    [Crossref]
  2. L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028(1)-9028(6) (2015).
    [Crossref]
  3. C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
    [Crossref] [PubMed]
  4. B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
    [Crossref]
  5. S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
    [Crossref] [PubMed]
  6. M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
    [Crossref] [PubMed]
  7. Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
    [Crossref] [PubMed]
  8. G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
    [Crossref]
  9. P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
    [Crossref] [PubMed]
  10. J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
    [Crossref] [PubMed]
  11. Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
    [Crossref]
  12. S. Li and M. Chen, “Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation,” Chin. Phys. B 25, 046103(1)-046103(6) (2016).
    [Crossref]
  13. D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
    [Crossref]
  14. S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
    [Crossref] [PubMed]
  15. M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC. Adv. 6, 9549–9553 (2016).
  16. Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).
  17. H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
    [Crossref]
  18. J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
    [Crossref]
  19. C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
    [Crossref] [PubMed]
  20. W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
    [Crossref]
  21. U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
    [Crossref] [PubMed]
  22. T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
    [Crossref]
  23. L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
    [Crossref] [PubMed]

2016 (3)

D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC. Adv. 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).

2015 (3)

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

2014 (2)

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[Crossref] [PubMed]

2012 (2)

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

2011 (2)

B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
[Crossref]

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

2010 (1)

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

2008 (2)

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

2007 (2)

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Z. Ajji and A. M. Ali, “Adsorption of methyl violet and brilliant blue onto poly (vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid,” Nucl. Instrum. Methods. Phys. Res. Sect B 265(1), 362–365 (2007).
[Crossref]

2006 (1)

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

2005 (2)

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

2001 (1)

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Ajji, Z.

Z. Ajji and A. M. Ali, “Adsorption of methyl violet and brilliant blue onto poly (vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid,” Nucl. Instrum. Methods. Phys. Res. Sect B 265(1), 362–365 (2007).
[Crossref]

Ali, A. M.

Z. Ajji and A. M. Ali, “Adsorption of methyl violet and brilliant blue onto poly (vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid,” Nucl. Instrum. Methods. Phys. Res. Sect B 265(1), 362–365 (2007).
[Crossref]

Almeida, C. A.

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

An, C.

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Berber, S.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Brown, N. M. D.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Cai, W. P.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Calderón, M.

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

Cao, H. Q.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Cao, Y. L.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Chen, C. Y.

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Chen, H. J.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Chen, J.

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

Chen, M.

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC. Adv. 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).

D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[Crossref] [PubMed]

Chen, X. Y.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Das, G.

B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
[Crossref]

Das, S.

B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
[Crossref]

Dettlaff-Weglikowska, U.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Dong, S.

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

Du, X. W.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Gao, M.

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

González, P.

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

González, S. O.

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

Graupner, R.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Haddon, R. C.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Han, L.

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

He, J. P.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Jhang, S. H.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Kim, B. H.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Kim, S. J.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Kulinich, S. A.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Laughlin, J. M.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Lee, H. J.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Lee, J. G.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Lee, W. H.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Lee, W. J.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Ley, L.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Li, J.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Li, L. H.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

Li, L. J.

Li, S.

Lin, Z.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Lin, Z. Y.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

Liu, P.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Liu, X.

Liu, X. D.

D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC. Adv. 6, 9549–9553 (2016).

Mallea, M. A.

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

Murphy, H.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Okpalugo, T. I. T.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Papakonstantinou, P.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Park, Y. W.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Peng, S.

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Reucroft, P. J.

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Roth, S.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Saha, B.

B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
[Crossref]

Saikia, J.

B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
[Crossref]

Shao, L.

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

Singh, S. C.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Skákalová, V.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Sun, B.

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

Sun, Y.

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Tománek, D.

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

Tseng, C. H.

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Wang, C.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Wang, C. C.

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Wang, C. X.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Wang, D. M.

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC. Adv. 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).

D. M. Wang, H. Zhang, L. J. Li, M. Chen, and X. D. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
[Crossref]

Wang, H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Wang, P.

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

Wang, Z. W.

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).

Wang, Z. Y.

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).

Watt, A. A. R.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Wu, Q. Z.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Xiang, J. H.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Xiao, J.

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

Yan, J.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Yan, J. H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

Yang, G.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Yang, G. W.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

Yang, S. K.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Zeng, H. B.

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Zeng, Z.

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

Zhai, Y.

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

Zhang, H.

Zhang, S. C.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Zhang, X. R.

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

Zheng, Z.

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Zhu, C.

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

Zou, H.

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

ACS Nano (1)

Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, and G. Yang, “Electronic Reconstruction of α-Ag2WO4 Nanorods for Visible-Light Photocatalysis,” ACS Nano 9(7), 7256–7265 (2015).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

H. B. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. K. Yang, J. P. He, and W. P. Cai, “Nanomaterials via laser ablation/irradiation in liquid: A review,” Adv. Funct. Mater. 22(7), 1333–1353 (2012).
[Crossref]

Adv. Mater. (1)

C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Adv. Mater. 22(23), 2570–2574 (2010).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

W. H. Lee, S. J. Kim, W. J. Lee, J. G. Lee, R. C. Haddon, and P. J. Reucroft, “X-ray photoelectron spectroscopic studies of surface modified single-walled carbon nanotube material,” Appl. Surf. Sci. 181(1-2), 121–127 (2001).
[Crossref]

Carbon (1)

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. M. Laughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised NWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Chemosphere (1)

M. Gao, Z. Zeng, B. Sun, H. Zou, J. Chen, and L. Shao, “Ozonation of azo dye acid red 14 in a microporous tube-in-tube microchannel reactor: decolorization and mechanism,” Chemosphere 89(2), 190–197 (2012).
[Crossref] [PubMed]

Environ. Sci. Pollut. Res. Int. (1)

S. O. González, C. A. Almeida, M. Calderón, M. A. Mallea, and P. González, “Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations,” Environ. Sci. Pollut. Res. Int. 21(18), 10583–10593 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

U. Dettlaff-Weglikowska, V. Skákalová, R. Graupner, S. H. Jhang, B. H. Kim, H. J. Lee, L. Ley, Y. W. Park, S. Berber, D. Tománek, and S. Roth, “Effect of SOCl2 treatment on electrical and mechanical properties of single-wall carbon nanotube networks,” J. Am. Chem. Soc. 127(14), 5125–5131 (2005).
[Crossref] [PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

Z. Y. Lin, J. Xiao, J. H. Yan, P. Liu, L. H. Li, and G. W. Yang, “Ag/AgCl plasmonic cubes with ultrahigh activity as advanced visible-light photocatalysts for photodegrading dyes,” J. Mater. Chem. A Mater. Energy Sustain. 3(14), 7649 (2015).
[Crossref]

J. Phys. Chem. C (2)

J. H. Xiang, H. Q. Cao, Q. Z. Wu, S. C. Zhang, X. R. Zhang, and A. A. R. Watt, “L-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanosperes,” J. Phys. Chem. C 112(10), 3580–3584 (2008).
[Crossref]

B. Saha, S. Das, J. Saikia, and G. Das, “Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: A comparative study,” J. Phys. Chem. C 115(16), 8024–8033 (2011).
[Crossref]

Nano Lett. (1)

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[Crossref] [PubMed]

Nanoscale (1)

L. Han, P. Wang, C. Zhu, Y. Zhai, and S. Dong, “Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst,” Nanoscale 3(7), 2931–2935 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

C. H. Tseng, C. C. Wang, and C. Y. Chen, “Modification of multi-walled carbon nanotubes by plasma treatment and further use as templates for growth of CdS nanocrystals,” Nanotechnology 17(22), 5602–5612 (2006).
[Crossref] [PubMed]

Nat. Commun. (1)

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 7042 (2015).
[Crossref] [PubMed]

Nucl. Instrum. Methods. Phys. Res. Sect B (1)

Z. Ajji and A. M. Ali, “Adsorption of methyl violet and brilliant blue onto poly (vinyl alcohol) membranes grafted with N-vinyl imidazole/acrylic acid,” Nucl. Instrum. Methods. Phys. Res. Sect B 265(1), 362–365 (2007).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[Crossref]

RSC. Adv. (2)

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC. Adv. 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC. Adv. 6, 12286–12289 (2016).

Other (2)

S. Li and M. Chen, “Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation,” Chin. Phys. B 25, 046103(1)-046103(6) (2016).
[Crossref]

L. H. Li, J. Xiao, P. Liu, and G. W. Yang, “Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal,” Sci. Rep. 5, 9028(1)-9028(6) (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a-b) The representative low-magnification and enlarged TEM images of the nano-particles by laser ablation of Ag target in TAA solution. (c) The SEM morphology of the products, and the inset shows the result of the EDS. (d) XRD pattern of the as-prepared nano-particles.

Fig. 2
Fig. 2

XPS spectra of (a) over structure, (b) C1s, (c) Ag3d and (d) S2p of Ag2S@Ag hybrid nano-particles.

Fig. 3
Fig. 3

The average Ag content with an error bar of 5% versus the laser density (4~9 GW/cm2). The insets (from left to right) show the HRTEM images of the Ag2S@Ag nano-materials that the relative ratios of Ag to Ag2S are 0.4:1, 1:1 and 1.4:1, respectively.

Fig. 4
Fig. 4

(a) The reduction performance of the remove of MB molecules from the solution (60 mg/L, 10 mL) in the presence of 7.58 mg as-prepared Ag2S@Ag hybrid nano-particles. (b) The UV-visible absorption spectra of the solution in the presence of 7.58 mg Ag2S@Ag nano-materials and the MB solution after removing the adsorbent from the solution by filters. The inset shows the direct photographs of gradual color change of the solution with reaction time. (c) The curve of the MB adsorption capacity versus the ratio of Ag to Ag2S in Ag2S@Ag hybrid nano-particles. The dosage of the adsorbents in each MB solution is about 7.58 mg, and the reduction time is 5 min in each experiment.

Fig. 5
Fig. 5

(a-b) The low-magnification and enlarged TEM images of the Ag2S@Ag absorbents after MB absorption. (c-d) XRD and FTIR spectrums of the Ag2S@Ag nano-particles before and after adsorbing MB molecules.

Fig. 6
Fig. 6

(a-b) The adsorption performance of the as-prepared Ag2S@Ag hybrid nano-particles for MO and Rhodamine B (RhB) solution, respectively. (c) The reduction-time dependence of the relative concentration C/C0 of MB, MO and RhB. (d) The schematic agglomeration process of the adsorbent Ag2S@Ag adsorbed with MB molecules.

Metrics