Abstract

We propose the use of nanostructured germanium (Ge) fabricated by simple metal-assisted chemical (MAC) etching as a high-frequency optoacoustic ultrasound transmitter. As an acoustic transfer medium, an elastomeric polymer, polydimethylsiloxane (PDMS), is spin-coated on top of Ge nanostructures, which is prepared with three different thicknesses with various MAC etching time in order to compare optoacoustic conversion efficiency. Under pulsed laser excitation, the Ge transmitter generates ultrasound pressure of 7.5 times stronger than that of Cr reference with comparable high frequency spectra (primary: 15 MHz and 6dB roll-off at 27 MHz) to CNT-PDMS composite. Considering its simple fabrication process without substrate limitation, the nanostructured Ge overlaid with PDMS can offer a promising approach for a highly efficient optoacoustic transmitter and toward all-optical high-frequency ultrasound transducers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple yet universal fabrication strategy for a focused photoacoustic transmitter

Qi Li, Haobo Zhu, Chuhuan Feng, Zhiwei He, Wei Dong, and Hongbin Yu
Opt. Lett. 44(6) 1300-1303 (2019)

Broadband miniature fiber optic ultrasound generator

Xiaotian Zou, Nan Wu, Ye Tian, and Xingwei Wang
Opt. Express 22(15) 18119-18127 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Nam and S. Y. Emelianov, “Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging,” J. Opt. Soc. Korea 18(2), 151–155 (2014).
    [Crossref]
  2. F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
    [Crossref] [PubMed]
  3. D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
    [Crossref] [PubMed]
  4. F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
    [Crossref] [PubMed]
  5. Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
    [Crossref] [PubMed]
  6. C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annu. Rev. Fluid Mech. 40(1), 395–420 (2008).
    [Crossref]
  7. J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
    [Crossref] [PubMed]
  8. R. J. von Gutfeld and H. F. Budd, “Laser‐generated MHz elastic waves from metallic‐liquid interfaces,” Appl. Phys. Lett. 34(10), 617 (1979).
    [Crossref]
  9. Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
    [Crossref]
  10. T. Buma, M. Spisar, and M. O’donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548 (2001).
    [Crossref]
  11. A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
    [Crossref] [PubMed]
  12. H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
    [Crossref] [PubMed]
  13. R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
    [Crossref]
  14. G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
    [Crossref]
  15. J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
    [Crossref]
  16. H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
    [Crossref] [PubMed]
  17. T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
    [Crossref] [PubMed]
  18. W. M. Haynes, CRC Handbook of Chemistry and Physcis, 96th ed. (CRC Press, 2015).

2015 (2)

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

2014 (2)

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

S. Y. Nam and S. Y. Emelianov, “Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging,” J. Opt. Soc. Korea 18(2), 151–155 (2014).
[Crossref]

2013 (1)

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

2011 (1)

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

2010 (2)

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

2008 (2)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annu. Rev. Fluid Mech. 40(1), 395–420 (2008).
[Crossref]

2006 (2)

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

2004 (1)

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

2002 (1)

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

2001 (1)

T. Buma, M. Spisar, and M. O’donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548 (2001).
[Crossref]

1989 (1)

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

1979 (1)

R. J. von Gutfeld and H. F. Budd, “Laser‐generated MHz elastic waves from metallic‐liquid interfaces,” Appl. Phys. Lett. 34(10), 617 (1979).
[Crossref]

Adamson, S. L.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Arima, K.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Ashkenazi, S.

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Baac, H. W.

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

Bear, J. C.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Bhachu, D. S.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Bodapati, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Budd, H. F.

R. J. von Gutfeld and H. F. Budd, “Laser‐generated MHz elastic waves from metallic‐liquid interfaces,” Appl. Phys. Lett. 34(10), 617 (1979).
[Crossref]

Buma, T.

T. Buma, M. Spisar, and M. O’donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548 (2001).
[Crossref]

Cannata, J.

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Cannata, J. M.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Carmalt, C. J.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Chabi, A.

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Chen, S.-L.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Chen, X.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Cheng, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Cherin, E.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Colchester, R. J.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Coleman, D. J.

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Coussios, C. C.

C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annu. Rev. Fluid Mech. 40(1), 395–420 (2008).
[Crossref]

Dai, H.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

De La Zerda, A.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Dei, K.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Desjardins, A. E.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Emelianov, S. Y.

Foster, F. S.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Franklin, D. W.

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

Gambhir, S. S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Guo, L. J.

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Harasiewicz, K. A.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Hart, A. J.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

Heo, J.

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Hou, Y.

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Jiranek, G. C.

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

Juggernauth, K. A.

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

Kawai, K.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Kawase, T.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Keren, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Khuri-Yakub, B. T.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Kim, J.-S.

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

Kimmey, M. B.

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

Knapik, D. A.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Lee, T.

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

Levi, J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Lincoff, H.

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Ling, T.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Liu, G.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Liu, Z.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Ma, T.-J.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Martin, R. W.

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

Mehi, J.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Morita, M.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Mosse, C. A.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Mura, A.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Nam, S. Y.

Nishitani, K.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

O’donnell, M.

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

T. Buma, M. Spisar, and M. O’donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548 (2001).
[Crossref]

Ok, J. G.

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Oralkan, O.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Papakonstantinou, I.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Park, H. J.

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Parkin, I. P.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Proctor, A.

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

Ritter, T. A.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Rondeau, M. J.

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Roy, R. A.

C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annu. Rev. Fluid Mech. 40(1), 395–420 (2008).
[Crossref]

Shung, K. K.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Silverman, R. H.

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Silverstein, F. E.

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

Smith, B. R.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Spisar, M.

T. Buma, M. Spisar, and M. O’donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548 (2001).
[Crossref]

Starkoski, B. G.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Sun, K.

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

Tawfick, S. H.

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

Thakur, U. K.

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Treeby, B. E.

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

Uchikoshi, J.

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Vaithilingam, S.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

von Gutfeld, R. J.

R. J. von Gutfeld and H. F. Budd, “Laser‐generated MHz elastic waves from metallic‐liquid interfaces,” Appl. Phys. Lett. 34(10), 617 (1979).
[Crossref]

Williams, J. A.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Won Baac, H.

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

Yoo, G.

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Yoon, H.

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

Zan, L.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Zavaleta, C.

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Zhang, M. Y.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Zhang, Y.

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

Zhou, Q.

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

Zhou, Y. Q.

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

Zhou, Y.-F.

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

J. G. Ok, S. H. Tawfick, K. A. Juggernauth, K. Sun, Y. Zhang, and A. J. Hart, “Electrically Addressable Hybrid Architectures of Zinc Oxide Nanowires Grown on Aligned Carbon Nanotubes,” Adv. Funct. Mater. 20(15), 2470–2480 (2010).
[Crossref]

Annu. Rev. Fluid Mech. (1)

C. C. Coussios and R. A. Roy, “Applications of acoustics and cavitation to noninvasive therapy and drug delivery,” Annu. Rev. Fluid Mech. 40(1), 395–420 (2008).
[Crossref]

Appl. Phys. Lett. (5)

H. Won Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, and L. J. Guo, “Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation,” Appl. Phys. Lett. 97(23), 234104 (2010).
[Crossref] [PubMed]

R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear, C. J. Carmalt, I. P. Parkin, B. E. Treeby, I. Papakonstantinou, and A. E. Desjardins, “Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings,” Appl. Phys. Lett. 104(17), 173502 (2014).
[Crossref]

R. J. von Gutfeld and H. F. Budd, “Laser‐generated MHz elastic waves from metallic‐liquid interfaces,” Appl. Phys. Lett. 34(10), 617 (1979).
[Crossref]

Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’donnell, and L. J. Guo, “Optical generation of high frequency ultrasound using two-dimensional gold nanostructure,” Appl. Phys. Lett. 89(9), 093901 (2006).
[Crossref]

T. Buma, M. Spisar, and M. O’donnell, “High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film,” Appl. Phys. Lett. 79(4), 548 (2001).
[Crossref]

Gastroenterology (1)

F. E. Silverstein, R. W. Martin, M. B. Kimmey, G. C. Jiranek, D. W. Franklin, and A. Proctor, “Experimental evaluation of an endoscopic ultrasound probe: in vitro and in vivo canine studies,” Gastroenterology 96(4), 1058–1062 (1989).
[Crossref] [PubMed]

IEEE Photonics J. (1)

G. Yoo, H. Yoon, J. Heo, U. K. Thakur, H. J. Park, H. W. Baac, and J. Heo, “All-Optical Ultrasound Transducer Using CNT-PDMS and Etalon Thin-Film Structure,” IEEE Photonics J. 7(6), 1–8 (2015).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. M. Cannata, J. A. Williams, Q. Zhou, T. A. Ritter, and K. K. Shung, “Development of a 35-MHz piezo-composite ultrasound array for medical imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 224–236 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Korea (1)

Nanoscale (1)

H. W. Baac, J. G. Ok, T. Lee, and L. J. Guo, “Nano-structural characteristics of carbon nanotube-polymer composite films for high-amplitude optoacoustic generation,” Nanoscale 7(34), 14460–14468 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

T. Kawase, A. Mura, K. Dei, K. Nishitani, K. Kawai, J. Uchikoshi, M. Morita, and K. Arima, “Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning,” Nanoscale Res. Lett. 8(1), 151 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3(9), 557–562 (2008).
[Crossref] [PubMed]

Ophthalmology (1)

D. J. Coleman, R. H. Silverman, A. Chabi, M. J. Rondeau, K. K. Shung, J. Cannata, and H. Lincoff, “High-resolution ultrasonic imaging of the posterior segment,” Ophthalmology 111(7), 1344–1351 (2004).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28(9), 1165–1172 (2002).
[Crossref] [PubMed]

World J. Clin. Oncol. (1)

Y.-F. Zhou, “High intensity focused ultrasound in clinical tumor ablation,” World J. Clin. Oncol. 2(1), 8–27 (2011).
[Crossref] [PubMed]

Other (1)

W. M. Haynes, CRC Handbook of Chemistry and Physcis, 96th ed. (CRC Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic flow chart of the fabrication procedure of the nanostructured Ge-based high-frequency ultrasound transmitter using metal-assisted chemical etching. (a) Ge thin-film (300, 500, or 700 nm) deposition. (b) Dispersion of AuNPs on the Ge thin-film. (c) and (d) MAC etching of the Ge in DI water. (e) Spin-coating of PDMS.
Fig. 2
Fig. 2 Experimental setup for characterizing acoustic performances of the fabricated transmitters. A ~7 ns pulsed laser with 532 nm wavelength is incident onto the device at an angle of 47.7°, and the generated ultrasound was detected by a hydrophone and recorded by an oscilloscope.
Fig. 3
Fig. 3 (a) X-ray diffraction (XRD) patterns of quartz substrate and 500 nm thick Ge film deposited on the quartz. (b) Scanning electron microscope (SEM) image of the deposited Ge layer with well-dispersed Au nanoparticles (approximately 20 nm in diameter). (c) SEM images of metal-assisted chemical etched Ge surface prior to PDMS spin-coating.
Fig. 4
Fig. 4 (a) Absorption spectra of the nanostructured Ge samples (etching time: 30 hours) with three different Ge thicknesses of 300, 500, 700 nm in the 400-700 nm wavelength range. Inset: absorption, reflection and transmission spectra from the etched Ge film of 500 nm thick. (b) Comparison of the absorption ratio at a wavelength of 532 nm for 300, 500, 700 nm thick Ge samples in response to different MAC etching times (10, 20, 30, 40, 50 hrs).
Fig. 5
Fig. 5 (a) Output ultrasonic waveforms generated from the fabricated transmitters with various Ge thickness (MAC etching time: 30 hrs) in comparison to the reference bare Cr layer and CNT-PDMS composite-based ultrasound transmitters. (b) MAC etching time dependence of output ultrasonic waveforms for 500 nm thick Ge samples under a laser fluence of 1.93 mJ/pulse. (c) Relationship between the absorption ratio and generated ultrasound intensity with a correlation coefficient (Pearson’s r) of 0.89. (d) Frequency spectra for the measured time-domain waveforms in (a), which are normalized to each maximum intensity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

O 2 + 4H + + 4e 2H 2 O
GeO 2 + 4H + + 4e Ge + 2H 2 O

Metrics