Abstract

Splices between materials with dissimilar thermal expansion and melting points are particularly difficult to create. We have developed a method for splicing YAG single crystal fiber to silica fiber. Optical losses associated with the splices were measured for multimode fibers to be 0.33 dB. The splices display greater than 50 kPsi of tensile strength with reaction bonding at the interface. Study of the elemental composition at the splice interface showed formation of a stable intermediate material that provides mechanical strength to the splice. This is a major step toward developing very high power integrated and compact laser systems based on crystals and glass despite their stark dissimilarities in physical and material properties.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development

Rajesh Thapa, Rafael R. Gattass, Vinh Nguyen, Geoff Chin, Dan Gibson, Woohong Kim, L. Brandon Shaw, and Jasbinder S. Sanghera
Opt. Lett. 40(21) 5074-5077 (2015)

Hydrothermally cladded crystalline fibers for laser applications [Invited]

Woohong Kim, Shyam Bayya, Brandon Shaw, Jason Myers, Syed N. Qadri, Rajesh Thapa, Dan Gibson, Collin Mcclain, Fred Kung, Joseph Kolis, Bradley Stadelman, and Jasbinder Sanghera
Opt. Mater. Express 9(6) 2716-2728 (2019)

Fusion splices for optical fibers by discharge heating

Iwao Hatakeyama and Haruhiko Tsuchiya
Appl. Opt. 17(12) 1959-1964 (1978)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  2. P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
    [Crossref] [PubMed]
  3. B. T. Do and A. V. Smith, “Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet,” Appl. Opt. 48(18), 3509–3514 (2009).
    [Crossref] [PubMed]
  4. R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
    [Crossref] [PubMed]
  5. J. L. Caslavsky, D. J. Viechnicki, M. Army, and M. A. Mechanics Research Center Watertown, “Study of the Melting Behavior of YAG Single Crystal by Optical Differential Thermal Analysis,” (1979).
  6. A. E. Barnes, R. G. May, S. Gollapudi, and R. O. Claus, “Sapphire fibers: optical attenuation and splicing techniques,” Appl. Opt. 34(30), 6855–6858 (1995).
    [Crossref] [PubMed]
  7. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
    [Crossref]
  8. W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
    [Crossref]
  9. F. Y. G. I. A. Bonder, “Phase Equilibria in the System Y2O3-Al2O3-SiO2,” Izv. Akad. Nauk SSSR, Ser. Khim. 7, 1325–1326 (pp. 1231–1322 in English translation) (1964).
  10. U. Kolitsch, H. Seifert, and F. Aldinger, “Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y, and Sc),” J. Phase Equilibria 19(5), 426–433 (1998).
    [Crossref]
  11. C. C. Lai, K.-Y. Huang, H.-J. Tsai, K.-Y. Hsu, S.-K. Liu, C.-T. Cheng, K.-D. Ji, C.-P. Ke, S.-R. Lin, and S.-L. Huang, “Yb3+:YAG silica fiber laser,” Opt. Lett. 34(15), 2357–2359 (2009).
    [Crossref] [PubMed]
  12. L. Chien-Chih, L. Yen-Sheng, H. Kuang-Yao, and H. Sheng-Lung, “Study on the core/cladding interface in Cr:YAG double-clad crystal fibers grown by the codrawing laser-heated pedestal growth method,” J. Appl. Phys. 108, 054308 (2010).
  13. J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
    [Crossref]
  14. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30(2), 129–131 (2005).
    [Crossref] [PubMed]

2015 (1)

2013 (1)

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

2010 (1)

2009 (3)

2008 (1)

2005 (1)

1998 (1)

U. Kolitsch, H. Seifert, and F. Aldinger, “Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y, and Sc),” J. Phase Equilibria 19(5), 426–433 (1998).
[Crossref]

1995 (1)

1984 (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[Crossref]

Aggarwal, I. D.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Aldinger, F.

U. Kolitsch, H. Seifert, and F. Aldinger, “Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y, and Sc),” J. Phase Equilibria 19(5), 426–433 (1998).
[Crossref]

Askins, C.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Baker, C.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Ballato, J.

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Barnes, A. E.

Barty, C. P. J.

Bayya, S.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Beach, R. J.

Bowman, S.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Byer, R. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[Crossref]

Chen, J. C.

Cheng, C.-T.

Chin, G.

Chuang, C. Y.

Claus, R. O.

Daw, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Dawson, J. W.

Do, B. T.

Dragic, P.

Dubinskii, M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Fejer, M. M.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[Crossref]

Florea, C.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Foy, P.

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Gattass, R. R.

Gibson, D.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Gollapudi, S.

Hawkins, T.

P. Dragic, P. C. Law, J. Ballato, T. Hawkins, and P. Foy, “Brillouin spectroscopy of YAG-derived optical fibers,” Opt. Express 18(10), 10055–10067 (2010).
[Crossref] [PubMed]

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Heebner, J. E.

Hsu, K.-Y.

Huang, K. Y.

Huang, K.-Y.

Huang, S. L.

Huang, S.-L.

Hunt, M.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Ji, K.-D.

Ke, C.-P.

Kim, W.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Kokuoz, B.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Kolitsch, U.

U. Kolitsch, H. Seifert, and F. Aldinger, “Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y, and Sc),” J. Phase Equilibria 19(5), 426–433 (1998).
[Crossref]

Lai, C. C.

Law, P. C.

Lin, S.-R.

Lin, Y. S.

Liu, S.-K.

Lo, C. Y.

Magel, G. A.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[Crossref]

Matthewson, M. J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

May, R. G.

McMillen, C.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Messerly, M. J.

Nguyen, V.

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[Crossref]

Pax, P. H.

Peele, J.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Sadowski, B.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Sanamyan, T.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Sanghera, J. S.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Seifert, H.

U. Kolitsch, H. Seifert, and F. Aldinger, “Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y, and Sc),” J. Phase Equilibria 19(5), 426–433 (1998).
[Crossref]

Shaw, L. B.

R. Thapa, R. R. Gattass, V. Nguyen, G. Chin, D. Gibson, W. Kim, L. B. Shaw, and J. S. Sanghera, “Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development,” Opt. Lett. 40(21), 5074–5077 (2015).
[Crossref] [PubMed]

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Shverdin, M. Y.

Siders, C. W.

Smith, A. V.

Sridharan, A. K.

Stappaerts, E. A.

Stolen, R.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Su, Z.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Thapa, R.

Tritt, T. M.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Tsai, H.-J.

Villalobos, G.

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Yeh, P. S.

Zhang, J.

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

Appl. Opt. (2)

J. Appl. Phys. (1)

J. Ballato, T. Hawkins, P. Foy, B. Kokuoz, R. Stolen, C. McMillen, M. Daw, Z. Su, T. M. Tritt, M. Dubinskii, J. Zhang, T. Sanamyan, and M. J. Matthewson, “On the fabrication of all-glass optical fibers from crystals,” J. Appl. Phys. 105(5), 053110 (2009).
[Crossref]

J. Phase Equilibria (1)

U. Kolitsch, H. Seifert, and F. Aldinger, “Phase relationships in the systems RE2O3-Al2O3-SiO2 (RE = rare earth element, Y, and Sc),” J. Phase Equilibria 19(5), 426–433 (1998).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

W. Kim, C. Baker, G. Villalobos, C. Florea, D. Gibson, L. B. Shaw, S. Bowman, S. Bayya, B. Sadowski, M. Hunt, C. Askins, J. Peele, I. D. Aggarwal, and J. S. Sanghera, “Recent advancements in transparent ceramics and crystal fibers for high power lasers,” Proc. SPIE 8733, 87330V (2013).
[Crossref]

Rev. Sci. Instrum. (1)

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers,” Rev. Sci. Instrum. 55(11), 1791–1796 (1984).
[Crossref]

Other (3)

F. Y. G. I. A. Bonder, “Phase Equilibria in the System Y2O3-Al2O3-SiO2,” Izv. Akad. Nauk SSSR, Ser. Khim. 7, 1325–1326 (pp. 1231–1322 in English translation) (1964).

J. L. Caslavsky, D. J. Viechnicki, M. Army, and M. A. Mechanics Research Center Watertown, “Study of the Melting Behavior of YAG Single Crystal by Optical Differential Thermal Analysis,” (1979).

L. Chien-Chih, L. Yen-Sheng, H. Kuang-Yao, and H. Sheng-Lung, “Study on the core/cladding interface in Cr:YAG double-clad crystal fibers grown by the codrawing laser-heated pedestal growth method,” J. Appl. Phys. 108, 054308 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (Top) Side view of YAG and silica fiber as seen in the splicer. (Bottom) YAG crystal fiber endface: commercially polished (bottom left) and cleaved (bottom right). Inset at the bootom right corner shows the standard diamond edge cleaver.
Fig. 2
Fig. 2 A micrograph showing the splice between the silica and YAG fiber.
Fig. 3
Fig. 3 An SEM image of a silica-YAG splice that was mounted in epoxy and then ground to the fiber midplane and polished exposing the material in the center of the fiber at the splice region. EPMA/WDS line scans were performed through the splice region near the central axis and near the fiber edge at the locations shown. Cracks shown in the edges of the fibers are due to grinding and polishing.
Fig. 4
Fig. 4 EPMA/WDS line scans through the splice interface near the fiber central axis corresponding to the positions approximated as “Center scan” in Fig. 3.
Fig. 5
Fig. 5 EPMA compositional measurements taken in 1 µm increments in the vicinity of the YAG:Silica fiber splice. Data was collected at the fiber midplane, coincident with the fibers’ common axis. The compositional points within the splice region, delimited by the markers A and B, indicate the formation of an intermediate material within the splice.
Fig. 6
Fig. 6 Ternary phase diagram of the system Y2O3-Al2O3-SiO2 with plots of isotherms, in wt%, adapted from the diagram of Bondar and Galakhov. Open circle crossed in the center represents EPMA compositional measurements taken in 1 µm increments from within the YAG:silica fiber splice region delimited by points A and B in Fig. 5.

Tables (1)

Tables Icon

Table 1 Refractive index, coefficient of thermal expansion (CTE) and softening/melting behavior of silica glass and Yb:YAG crystal

Metrics