Abstract

We propose an ultrathin fish-scale metamaterial structure for broadband absorption with an averaged value of higher than 90% over the entire visible spectrum (400-700 nm) under normal incidence. The performance preserves under a wide range of incident angle from 0° to 60°. Light absorption of such a plasmonic metamaterial absorber (PMA) relies on the localized and delocalized surface plasmon resonances of the cascaded fish-scale meta-atoms in the structure. The PMA presents excellent structural tunability for absorption band. This study with rich finding is helpful for light harvesting with metamaterial strategy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime

Minghui Luo, Su Shen, Lei Zhou, Shangliang Wu, Yun Zhou, and Linsen Chen
Opt. Express 25(14) 16715-16724 (2017)

Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers

Serkan Butun and Koray Aydin
Opt. Express 22(16) 19457-19468 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
    [Crossref]
  2. I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
    [Crossref]
  3. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
    [Crossref]
  4. J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
    [Crossref]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  6. N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
    [Crossref] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  8. Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
    [Crossref]
  11. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  12. D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
    [Crossref] [PubMed]
  13. Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  14. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
    [Crossref] [PubMed]
  15. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
    [Crossref] [PubMed]
  16. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
    [Crossref] [PubMed]
  17. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012).
    [Crossref] [PubMed]
  18. B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
    [Crossref]
  19. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [Crossref] [PubMed]
  20. S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
    [Crossref] [PubMed]
  21. A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
    [Crossref] [PubMed]
  22. M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
    [Crossref]
  23. Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
    [Crossref] [PubMed]
  24. Q. Q. Liang, W. X. Yu, W. C. Zhao, T. S. Wang, J. L. Zhao, H. S. Zhang, and S. H. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
    [Crossref]
  25. V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
    [Crossref]
  26. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
    [Crossref]
  27. T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
    [Crossref]
  28. J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
    [Crossref]
  29. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
    [Crossref] [PubMed]
  30. J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
    [Crossref]
  31. E. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).
  32. S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
    [Crossref]
  33. P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
    [Crossref]
  34. H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
    [Crossref]
  35. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  36. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  37. Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
    [Crossref] [PubMed]
  38. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [Crossref]
  39. N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85(7), 075120 (2012).
    [Crossref]
  40. S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer Science + Business Media LLC, 2007).
  41. L. Guo, M. Y. Lyu, and Z. J. Sun, “Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves,” Plasmonics 10(2), 305–309 (2014).
    [Crossref]

2015 (5)

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

2014 (8)

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[Crossref] [PubMed]

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

L. Guo, M. Y. Lyu, and Z. J. Sun, “Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves,” Plasmonics 10(2), 305–309 (2014).
[Crossref]

2013 (6)

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

B. Y. Zhang, J. Hendrickson, and J. P. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30(3), 656–662 (2013).
[Crossref]

Q. Q. Liang, W. X. Yu, W. C. Zhao, T. S. Wang, J. L. Zhao, H. S. Zhang, and S. H. Tao, “Numerical study of the meta-nanopyramid array as efficient solar energy absorber,” Opt. Mater. Express 3(8), 1187–1196 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

2010 (2)

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

2009 (4)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express 17(13), 11039–11044 (2009).
[Crossref] [PubMed]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
[Crossref] [PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

2008 (2)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

2007 (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

2006 (2)

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (1)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Anh, N. H. T.

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Aydin, K.

S. Butun and K. Aydin, “Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers,” Opt. Express 22(16), 19457–19468 (2014).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Baldi, A.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Barber, G. D.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Baum, B.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Buchwald, W.

Burgnies, L.

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Butun, S.

Cao, Y.

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

Chen, W. C.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Chen, X.

Chen, Y.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Elbahri, M.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Erten, S.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Fan, Y.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

Fan, Y. C.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Faryad, M.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Faupel, F.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Fedotov, V. A.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, C.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Guo, J.

Guo, J. P.

Guo, L.

L. Guo, M. Y. Lyu, and Z. J. Sun, “Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves,” Plasmonics 10(2), 305–309 (2014).
[Crossref]

Hall, A. S.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Han, J.

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Hao, J. P.

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Hendrickson, J.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ho, C. S.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Hu, C.

Huang, F. M.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Jankovic, V.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Jiang, W.

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kafesaki, M.

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85(7), 075120 (2012).
[Crossref]

Kang, J. H.

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

Kao, T. S.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Khodasevych, I. E.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Kildishev, A. V.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

Kim, K. W.

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Kim, Y. J.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

Koschny, T.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85(7), 075120 (2012).
[Crossref]

Lakhtakia, A.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, Y. P.

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Lheurette, É.

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Li, F.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Li, H.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

Li, H. Q.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Li, J.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Liang, Q. Q.

Lippens, D.

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Liu, L.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009).
[Crossref] [PubMed]

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Liu, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Luo, X.

Lyu, M. Y.

L. Guo, M. Y. Lyu, and Z. J. Sun, “Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves,” Plasmonics 10(2), 305–309 (2014).
[Crossref]

Ma, Y. G.

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Mallouk, T. E.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Mayer, T. S.

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

Mitchell, A.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Naik, G. V.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Narayan, T.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Narimanov, E. E.

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

Nikitov, S. A.

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

Okada, É.

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

Padilla, W. J.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, J. W.

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rhee, J. Y.

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

Rogers, E. T. F.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

Rosengarten, G.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Scholl, J. A.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shen, N. H.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85(7), 075120 (2012).
[Crossref]

Shrekenhamer, D.

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soref, R.

Soukoulis, C. M.

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85(7), 075120 (2012).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Strunskus, T.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

Sun, Z. J.

L. Guo, M. Y. Lyu, and Z. J. Sun, “Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves,” Plasmonics 10(2), 305–309 (2014).
[Crossref]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

Tao, S. H.

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tuong, P. V.

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Wang, L.

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Wang, T. S.

Wang, Z. S.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Wei, Z.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Y. Fan, Z. Wei, Z. Zhang, and H. Li, “Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators,” Opt. Lett. 38(24), 5410–5413 (2013).
[Crossref] [PubMed]

Wei, Z. Y.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Wu, C.

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Yin, G.

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

Yin, S.

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

Yoo, Y. J.

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, W. X.

Yu, X.

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

Yuan, J.

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, B.

Zhang, B. Y.

Zhang, F.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Zhang, H. S.

Zhang, Z.

Zhao, J. L.

Zhao, Q.

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Zhao, W. C.

Zhao, Y.

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Zhao, Z.

Zheludev, N. I.

N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

Zheng, H. Y.

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

Zhu, J. F.

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

Zillohu, A. U.

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

ACS Nano (1)

A. S. Hall, M. Faryad, G. D. Barber, L. Liu, S. Erten, T. S. Mayer, A. Lakhtakia, and T. E. Mallouk, “Broadband Light Absorption with Multiple Surface Plasmon Polariton Waves Excited at the Interface of a Metallic Grating and Photonic Crystal,” ACS Nano 7(6), 4995–5007 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

Y. C. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Adv. Opt. Mater. (1)

I. E. Khodasevych, L. Wang, A. Mitchell, and G. Rosengarten, “Micro- and Nanostructured Surfaces for Selective Solar Absorption,” Adv. Opt. Mater. 3(7), 852–881 (2015).
[Crossref]

Appl. Phys. Lett. (8)

E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95(4), 041106 (2009).
[Crossref]

Y. C. Fan, J. Han, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, and H. Q. Li, “Subwavelength electromagnetic diode: One-way response of cascading nonlinear meta-atoms,” Appl. Phys. Lett. 98(15), 151903 (2011).
[Crossref]

J. P. Hao, É. Lheurette, L. Burgnies, É. Okada, and D. Lippens, “Bandwidth enhancement in disordered metamaterial absorbers,” Appl. Phys. Lett. 105(8), 081102 (2014).
[Crossref]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett. 88(9), 091119 (2006).
[Crossref]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett. 96(4), 041103 (2010).
[Crossref]

J. Han, H. Q. Li, Y. C. Fan, Z. Y. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. S. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett. 98(15), 151908 (2011).
[Crossref]

M. K. Hedayati, A. U. Zillohu, T. Strunskus, F. Faupel, and M. Elbahri, “Plasmonic tunable metamaterial absorber as ultraviolet protection film,” Appl. Phys. Lett. 104(4), 041103 (2014).
[Crossref]

S. Yin, J. F. Zhu, W. Jiang, J. Yuan, G. Yin, and Y. G. Ma, “Comment on “Triple-band perfect metamaterial absorption, based on single cut-wire bar” [Appl. Phys. Lett. 106, 071105 (2015)],” Appl. Phys. Lett. 107(2), 026101 (2015).
[Crossref]

J. Electromagn. Waves Appl. (1)

J. Y. Rhee, Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, “Metamaterial-based perfect absorbers,” J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014).
[Crossref]

J. Korean Phys. Soc. (2)

P. V. Tuong, J. W. Park, Y. J. Kim, Y. J. Yoo, Y. P. Lee, J. Y. Rhee, K. W. Kim, S. A. Nikitov, and N. H. T. Anh, “Broadband reflection of polarization conversion by 90° in metamaterial,” J. Korean Phys. Soc. 64(8), 1116–1119 (2014).
[Crossref]

H. Y. Zheng, Y. J. Yoo, Y. J. Kim, Y. P. Lee, J. H. Kang, K. W. Kim, and S. A. Nikitov, “Reflective metamaterial polarization converter in a broad frequency range,” J. Korean Phys. Soc. 64(6), 822–825 (2014).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A, Pure Appl. Opt. 9(1), L1–L2 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

MRS Bull. (1)

J. A. Dionne, A. Baldi, B. Baum, C. S. Ho, V. Janković, G. V. Naik, T. Narayan, J. A. Scholl, and Y. Zhao, “Localized fields, global impact: Industrial applications of resonant plasmonic materials,” MRS Bull. 40(12), 1138–1145 (2015).
[Crossref]

Nano Lett. (2)

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured Metal Film with Asymmetric Optical Transmission,” Nano Lett. 8(9), 2940–2943 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (3)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[Crossref]

N. H. Shen, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Optical metamaterials with different metals,” Phys. Rev. B 85(7), 075120 (2012).
[Crossref]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79(4), 045131 (2009).
[Crossref]

Phys. Rev. Lett. (2)

D. Shrekenhamer, W. C. Chen, and W. J. Padilla, “Liquid crystal tunable metamaterial absorber,” Phys. Rev. Lett. 110(17), 177403 (2013).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Plasmonics (1)

L. Guo, M. Y. Lyu, and Z. J. Sun, “Full Resonant Absorption of Light in Metallic Subwavelength Gratings with Asymmetric Binary Nanogrooves,” Plasmonics 10(2), 305–309 (2014).
[Crossref]

Sci. Rep. (1)

Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, and H. Li, “Tunable mid-infrared coherent perfect absorption in a graphene meta-surface,” Sci. Rep. 5, 13956 (2015).
[Crossref] [PubMed]

Science (4)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

N. I. Zheludev, “Applied physics. The Road Ahead for Metamaterials,” Science 328(5978), 582–583 (2010).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Other (2)

E. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).

S. A. Maier, Plasmonics: Fundamentals and Applications, (Springer Science + Business Media LLC, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of the unit cell of the PMA and (b) the top view of the unit cell with geometric parameters marked with arrows and letters.
Fig. 2
Fig. 2 Complex dielectric function from experiment [31] (hollow squares) and Drude model (solid lines).
Fig. 3
Fig. 3 The absorption of the PMA at normal incidence for x -polarized (Ax) and y -polarized (Ay) EM waves.
Fig. 4
Fig. 4 The absorption of the PMA for the (a) x -polarized wave, (b) y -polarized wave as a function of period P , frequency and wavelength.
Fig. 5
Fig. 5 The calculated magnitude distribution of the magnetic field for the x -polarized incident wave at 495.5 THz: (a) the top Ag / bottom quartz interface (in the x - y plane), (b) the right side (in the x - z plane), (c) the top side (in the z - y plane), (d) the top quartz / bottom Ag interface (in the x - y plane) of the PMA unit cell. 725 THz: (e) the top Ag / bottom quartz interface (in the x - y plane), (f) the right side (in the x - z plane), (g) the top side (in the z - y plane), (h) the top quartz / bottom Ag interface (in the x - y plane) of the PMA unit cell.
Fig. 6
Fig. 6 Absorption of the PMA as a function of polarization angle, frequency and wavelength.
Fig. 7
Fig. 7 Absorption of the PMA for the non-normal incident EM waves: (a) TE mode, (b) TM mode.
Fig. 8
Fig. 8 Cross-polarization reflection coefficients of the PMA for the non-normal incident EM waves: (a) R y x , (b) R x y .

Metrics