Abstract

In this work, a detailed study of the properties of aluminosilicate glass rods manufactured by means of the laser floating zone (LFZ) technique is presented. Samples fabrication was carried out in controlled atmosphere using air, nitrogen, and oxygen. Transmission spectra showed that glasses manufactured in oxygen presented high optical transmission in the visible spectral range compared to those manufactured in other environments, thus allowing us to tune their optical behavior between transparent and nearly opaque through the control of the surrounding atmosphere. Microstructure and thermo-mechanical properties were also assessed, showing similar hardness, toughness, flexural strength and glass transition temperature values, and in the same range as other aluminosilicate glasses. Compositional and structural characterization in terms of energy dispersive X-ray spectroscopy (EDX) and electron paramagnetic resonance (EPR) allowed us to determine the origin of optical transmission dependence on the fabrication atmosphere.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Directional solidification, thermo-mechanical and optical properties of (MgxCa1-x)3Al2Si3O12 glasses doped with Nd3+ ions

D. Sola, D. Conejos, J. Martínez de Mendivil, L. Ortega-San-Martín, G. Lifante, and J.I. Peña
Opt. Express 23(20) 26356-26368 (2015)

Structural and optical characterization of Gd2SiO5 crystalline fibres obtained by laser floating zone

F. Rey-García, N. Ben Sedrine, M. R. Soares, A. J. S. Fernandes, A. B. Lopes, N. M. Ferreira, T. Monteiro, and F. M. Costa
Opt. Mater. Express 7(3) 868-879 (2017)

Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics

D. Sola, R. Balda, J.I. Peña, and J. Fernández
Opt. Express 20(10) 10701-10711 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2003).
  2. D. Bäuerler, Laser Processing and Chemistry (Springer, 2000).
  3. M. V. Allmen and A. Blatter, Laser-beam Interactions with Materials: Physical Principles and Applications (Springer, 2002).
  4. Y. Pauleau, Materials Surface Processing by Directed Energy Techniques (Elsevier Science, 2006).
  5. H. Misawa and S. Juodkazis, 3D Laser Microfabrication (Wiley, 2006).
  6. G. S. Upadhyaya, Sintered Metallic and Ceramic Materials: Preparation, Properties and Applications (Wiley, 1999).
  7. E. A. Olevsky and R. Bordia, Advances in Sintering Science and Technology (Wiley, 2010).
  8. D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
    [Crossref]
  9. A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
    [Crossref]
  10. D. Sola, D. Conejos, J. Martínez de Mendivil, L. Ortega-San-Martín, G. Lifante, and J. I. Peña, “Directional solidification, thermo-mechanical and optical properties of (MgxCa1-x)3Al2Si3O12 glasses doped with Nd3+ ions,” Opt. Express 23(20), 26356–26368 (2015).
    [Crossref] [PubMed]
  11. D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
    [Crossref] [PubMed]
  12. D. Sola and J. I. Peña, “Laser machining of Al2O3-ZrO2 (3%Y2O3) eutectic composite,” J. Eur. Ceram. Soc. 32(4), 807–814 (2012).
    [Crossref]
  13. J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
    [Crossref]
  14. D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
    [Crossref]
  15. F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
    [Crossref]
  16. J. Kohli and J. E. Shelby, “Rare-earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 73(1), 39–42 (1990).
    [Crossref]
  17. M. J. Hyatt and D. E. Day, “Glass properties in the yttria-alumina-silica system,” J. Am. Ceram. Soc. 70(10), 283–287 (1987).
    [Crossref]
  18. P. Vomacka and O. Babushkin, “Yttria-alumina –silica glasses with addition of zirconia,” J. Eur. Ceram. Soc. 15(9), 921–928 (1995).
    [Crossref]
  19. S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
    [Crossref]
  20. E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
    [Crossref]
  21. M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf. Coat. Tech. 202(9), 1712–1717 (2008).
    [Crossref]
  22. K. Nassau, The Physics and Chemistry of Color. The Fifteen Causes of Color (Wiley, 2001).
  23. ASTM C1327–99, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics (1999).
  24. G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
    [Crossref]
  25. S. Takahashi, D. R. Neuville, and H. Takebe, “Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 411, 5–12 (2015).
    [Crossref]
  26. R. J. Hand and D. R. Tadjiev, “Mechanical properties of silicate glasses as a function of composition,” J. Non-Cryst. Solids 356(44-49), 2417–2423 (2010).
    [Crossref]
  27. F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
    [Crossref] [PubMed]
  28. SCHOTT CERAN® Ceran Suprema® Cooktop Panels, Technical Delivery Specification TL 1 00 03 01 – 00.
  29. N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press Handbook Series, 1986).
  30. N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
    [Crossref]
  31. A. Shaim and M. Et-tabirou, “Role of titanium in sodium titanophosphate glasses and a model of structural units,” Mater. Chem. Phys. 80(1), 63–67 (2003).
    [Crossref]
  32. C. R. Bamford, Colour Generation and Control in Glass (Elsevier, 1977).
  33. M. Farouk, “Effect of TiO2 on the structural, thermal and optical properties of BaO–Li2O–diborate glasses,” J. Non-Cryst. Solids 402, 74–78 (2014).
    [Crossref]

2015 (2)

2014 (2)

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

M. Farouk, “Effect of TiO2 on the structural, thermal and optical properties of BaO–Li2O–diborate glasses,” J. Non-Cryst. Solids 402, 74–78 (2014).
[Crossref]

2012 (2)

2011 (1)

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

2010 (1)

R. J. Hand and D. R. Tadjiev, “Mechanical properties of silicate glasses as a function of composition,” J. Non-Cryst. Solids 356(44-49), 2417–2423 (2010).
[Crossref]

2008 (2)

M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf. Coat. Tech. 202(9), 1712–1717 (2008).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

2006 (1)

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

2003 (3)

G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
[Crossref]

N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
[Crossref]

A. Shaim and M. Et-tabirou, “Role of titanium in sodium titanophosphate glasses and a model of structural units,” Mater. Chem. Phys. 80(1), 63–67 (2003).
[Crossref]

2002 (1)

A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
[Crossref]

1997 (1)

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

1996 (1)

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

1995 (1)

P. Vomacka and O. Babushkin, “Yttria-alumina –silica glasses with addition of zirconia,” J. Eur. Ceram. Soc. 15(9), 921–928 (1995).
[Crossref]

1990 (2)

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

J. Kohli and J. E. Shelby, “Rare-earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 73(1), 39–42 (1990).
[Crossref]

1987 (1)

M. J. Hyatt and D. E. Day, “Glass properties in the yttria-alumina-silica system,” J. Am. Ceram. Soc. 70(10), 283–287 (1987).
[Crossref]

Abu Osman, N. A.

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

Andreeta, J. P.

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

Andreeta, M. R. B.

A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
[Crossref]

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

Anglada Gomilla, M.

G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
[Crossref]

Ardila, D. R.

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

Babushkin, O.

P. Vomacka and O. Babushkin, “Yttria-alumina –silica glasses with addition of zirconia,” J. Eur. Ceram. Soc. 15(9), 921–928 (1995).
[Crossref]

Balda, R.

Casellas Padró, D.

G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
[Crossref]

Conejos, D.

Cuffini, S. L.

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

Day, D. E.

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

M. J. Hyatt and D. E. Day, “Glass properties in the yttria-alumina-silica system,” J. Am. Ceram. Soc. 70(10), 283–287 (1987).
[Crossref]

de Camargo, A. S. S.

A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
[Crossref]

Erbe, E. M.

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

Ester, F. J.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Et-tabirou, M.

A. Shaim and M. Et-tabirou, “Role of titanium in sodium titanophosphate glasses and a model of structural units,” Mater. Chem. Phys. 80(1), 63–67 (2003).
[Crossref]

Fargas Ribas, G.

G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
[Crossref]

Farouk, M.

M. Farouk, “Effect of TiO2 on the structural, thermal and optical properties of BaO–Li2O–diborate glasses,” J. Non-Cryst. Solids 402, 74–78 (2014).
[Crossref]

Fernández, J.

Hand, R. J.

R. J. Hand and D. R. Tadjiev, “Mechanical properties of silicate glasses as a function of composition,” J. Non-Cryst. Solids 356(44-49), 2417–2423 (2010).
[Crossref]

Hashimoto, T.

N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
[Crossref]

Hernandes, A. C.

A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
[Crossref]

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

Hwang, C. S.

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

Hyatt, M. J.

M. J. Hyatt and D. E. Day, “Glass properties in the yttria-alumina-silica system,” J. Am. Ceram. Soc. 70(10), 283–287 (1987).
[Crossref]

Kadri, N. A.

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

Kamiya, K.

N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
[Crossref]

Kohli, J.

J. Kohli and J. E. Shelby, “Rare-earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 73(1), 39–42 (1990).
[Crossref]

Lifante, G.

Lin, S. L.

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

Llanes Pitarch, L. M.

G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
[Crossref]

Llorca, J.

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Martínez de Mendivil, J.

Mascarenhas, Y. P.

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

Mehrali, M.

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

Metselaar, H. S. C.

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

Miranzo, P.

M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf. Coat. Tech. 202(9), 1712–1717 (2008).
[Crossref]

Nasu, H.

N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
[Crossref]

Neuville, D. R.

S. Takahashi, D. R. Neuville, and H. Takebe, “Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 411, 5–12 (2015).
[Crossref]

Nunes, L. A. O.

A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
[Crossref]

Oliete, P. B.

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

Orera, V. M.

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Ortega-San-Martín, L.

Osendi, M. I.

M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf. Coat. Tech. 202(9), 1712–1717 (2008).
[Crossref]

Oshkour, A. A.

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

Peña, J. I.

D. Sola, D. Conejos, J. Martínez de Mendivil, L. Ortega-San-Martín, G. Lifante, and J. I. Peña, “Directional solidification, thermo-mechanical and optical properties of (MgxCa1-x)3Al2Si3O12 glasses doped with Nd3+ ions,” Opt. Express 23(20), 26356–26368 (2015).
[Crossref] [PubMed]

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
[Crossref] [PubMed]

D. Sola and J. I. Peña, “Laser machining of Al2O3-ZrO2 (3%Y2O3) eutectic composite,” J. Eur. Ceram. Soc. 32(4), 807–814 (2012).
[Crossref]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Sainz, M. A.

M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf. Coat. Tech. 202(9), 1712–1717 (2008).
[Crossref]

Shaim, A.

A. Shaim and M. Et-tabirou, “Role of titanium in sodium titanophosphate glasses and a model of structural units,” Mater. Chem. Phys. 80(1), 63–67 (2003).
[Crossref]

Shelby, J. E.

J. Kohli and J. E. Shelby, “Rare-earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 73(1), 39–42 (1990).
[Crossref]

Shimoji, N.

N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
[Crossref]

Shirazi, F. S.

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

Sola, D.

D. Sola, D. Conejos, J. Martínez de Mendivil, L. Ortega-San-Martín, G. Lifante, and J. I. Peña, “Directional solidification, thermo-mechanical and optical properties of (MgxCa1-x)3Al2Si3O12 glasses doped with Nd3+ ions,” Opt. Express 23(20), 26356–26368 (2015).
[Crossref] [PubMed]

D. Sola, R. Balda, J. I. Peña, and J. Fernández, “Site-selective laser spectroscopy of Nd3+ ions in 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass-ceramics,” Opt. Express 20(10), 10701–10711 (2012).
[Crossref] [PubMed]

D. Sola and J. I. Peña, “Laser machining of Al2O3-ZrO2 (3%Y2O3) eutectic composite,” J. Eur. Ceram. Soc. 32(4), 807–814 (2012).
[Crossref]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

Tadjiev, D. R.

R. J. Hand and D. R. Tadjiev, “Mechanical properties of silicate glasses as a function of composition,” J. Non-Cryst. Solids 356(44-49), 2417–2423 (2010).
[Crossref]

Takahashi, S.

S. Takahashi, D. R. Neuville, and H. Takebe, “Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 411, 5–12 (2015).
[Crossref]

Takebe, H.

S. Takahashi, D. R. Neuville, and H. Takebe, “Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 411, 5–12 (2015).
[Crossref]

Vomacka, P.

P. Vomacka and O. Babushkin, “Yttria-alumina –silica glasses with addition of zirconia,” J. Eur. Ceram. Soc. 15(9), 921–928 (1995).
[Crossref]

Bol. Soc. Esp. Ceram. (2)

F. J. Ester, D. Sola, and J. I. Peña, “Thermal stresses in the Al2O3-ZrO2(Y2O3) eutectic composite during the growth by the laser floating zone technique,” Bol. Soc. Esp. Ceram. 47, 352–357 (2008).
[Crossref]

G. Fargas Ribas, D. Casellas Padró, L. M. Llanes Pitarch, and M. Anglada Gomilla, “Thermal shock resistance of Y-TZP with Palmqvist craks,” Bol. Soc. Esp. Ceram. 42(1), 9–14 (2003).
[Crossref]

J. Am. Ceram. Soc. (3)

J. Kohli and J. E. Shelby, “Rare-earth Aluminosilicate Glasses,” J. Am. Ceram. Soc. 73(1), 39–42 (1990).
[Crossref]

M. J. Hyatt and D. E. Day, “Glass properties in the yttria-alumina-silica system,” J. Am. Ceram. Soc. 70(10), 283–287 (1987).
[Crossref]

E. M. Erbe and D. E. Day, “Properties of Sm2O3-Al2O3-SiO2 glasses for in vivo applications,” J. Am. Ceram. Soc. 73(9), 2708–2713 (1990).
[Crossref]

J. Cryst. Growth (1)

D. R. Ardila, M. R. B. Andreeta, S. L. Cuffini, A. C. Hernandes, J. P. Andreeta, and Y. P. Mascarenhas, “Laser heated pedestal growth of Sr2RuO4 single-crystal fibers from SrRuO3,” J. Cryst. Growth 177(1–2), 52–56 (1997).
[Crossref]

J. Eur. Ceram. Soc. (3)

P. Vomacka and O. Babushkin, “Yttria-alumina –silica glasses with addition of zirconia,” J. Eur. Ceram. Soc. 15(9), 921–928 (1995).
[Crossref]

D. Sola and J. I. Peña, “Laser machining of Al2O3-ZrO2 (3%Y2O3) eutectic composite,” J. Eur. Ceram. Soc. 32(4), 807–814 (2012).
[Crossref]

D. Sola, F. J. Ester, P. B. Oliete, and J. I. Peña, “Study of the stability of the molten zone and the stresses induced during the growth of Al2O3-Y3Al5O12 eutectic composite by the laser floating zone technique,” J. Eur. Ceram. Soc. 31(7), 1211–1218 (2011).
[Crossref]

J. Mech. Behav. Biomed. Mater. (1)

F. S. Shirazi, M. Mehrali, A. A. Oshkour, H. S. C. Metselaar, N. A. Kadri, and N. A. Abu Osman, “Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications,” J. Mech. Behav. Biomed. Mater. 30, 168–175 (2014).
[Crossref] [PubMed]

J. Non-Cryst. Solids (5)

N. Shimoji, T. Hashimoto, H. Nasu, and K. Kamiya, “Non-linear optical properties of Li2O–TiO2–P2O5 glasses,” J. Non-Cryst. Solids 324(1-2), 50–57 (2003).
[Crossref]

S. Takahashi, D. R. Neuville, and H. Takebe, “Thermal properties, density and structure of percalcic and peraluminus CaO–Al2O3–SiO2 glasses,” J. Non-Cryst. Solids 411, 5–12 (2015).
[Crossref]

R. J. Hand and D. R. Tadjiev, “Mechanical properties of silicate glasses as a function of composition,” J. Non-Cryst. Solids 356(44-49), 2417–2423 (2010).
[Crossref]

M. Farouk, “Effect of TiO2 on the structural, thermal and optical properties of BaO–Li2O–diborate glasses,” J. Non-Cryst. Solids 402, 74–78 (2014).
[Crossref]

S. L. Lin and C. S. Hwang, “Structures of CeO2-Al2O3-SiO2 glasses,” J. Non-Cryst. Solids 202(1-2), 61–67 (1996).
[Crossref]

J. Phys. Condens. Matter (1)

A. S. S. de Camargo, L. A. O. Nunes, M. R. B. Andreeta, and A. C. Hernandes, “Near-infrared and up-conversion properties of neodymium-doped RE0.8La0.2VO4 (RE = Y, Gd) single-crystal fibers grown by the laser-heated pedestal growth technique,” J. Phys. Condens. Matter 14(50), 13889–13897 (2002).
[Crossref]

Mater. Chem. Phys. (1)

A. Shaim and M. Et-tabirou, “Role of titanium in sodium titanophosphate glasses and a model of structural units,” Mater. Chem. Phys. 80(1), 63–67 (2003).
[Crossref]

Opt. Express (2)

Prog. Mater. Sci. (1)

J. Llorca and V. M. Orera, “Directionally-solidified eutectic ceramic oxides,” Prog. Mater. Sci. 51(6), 711–809 (2006).
[Crossref]

Surf. Coat. Tech. (1)

M. A. Sainz, M. I. Osendi, and P. Miranzo, “Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying,” Surf. Coat. Tech. 202(9), 1712–1717 (2008).
[Crossref]

Other (12)

K. Nassau, The Physics and Chemistry of Color. The Fifteen Causes of Color (Wiley, 2001).

ASTM C1327–99, Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics (1999).

W. M. Steen and J. Mazumder, Laser Material Processing (Springer, 2003).

D. Bäuerler, Laser Processing and Chemistry (Springer, 2000).

M. V. Allmen and A. Blatter, Laser-beam Interactions with Materials: Physical Principles and Applications (Springer, 2002).

Y. Pauleau, Materials Surface Processing by Directed Energy Techniques (Elsevier Science, 2006).

H. Misawa and S. Juodkazis, 3D Laser Microfabrication (Wiley, 2006).

G. S. Upadhyaya, Sintered Metallic and Ceramic Materials: Preparation, Properties and Applications (Wiley, 1999).

E. A. Olevsky and R. Bordia, Advances in Sintering Science and Technology (Wiley, 2010).

C. R. Bamford, Colour Generation and Control in Glass (Elsevier, 1977).

SCHOTT CERAN® Ceran Suprema® Cooktop Panels, Technical Delivery Specification TL 1 00 03 01 – 00.

N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press Handbook Series, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical photographs showing the samples grown in different atmospheres: (a) air, (b) nitrogen, (c) oxygen.

Fig. 2
Fig. 2

Visible range transmission spectra of glasses grown in different atmospheres and departing glass-ceramic.

Fig. 3
Fig. 3

EPR spectra measured in the glasses grown in different atmospheres: (a) oxygen, (b) nitrogen, (c) air. A star and an open box mark the signals related to Fe3+ and V4+ centers in Fig. 3(a) (see text). The signal in Fig. 3(b) is assigned to Ti3+ centers (see text). In order to make the differences in intensity of the signals between the spectra visible, the enlargement of the spectra with respect to Fig. 3(b) are indicated. The enlarged detail of Fig. 3(c) allows seeing the presence of the Fe3+ and V4+ signals beside the Ti3+ one.

Tables (2)

Tables Icon

Table 1 Compositional analysis in at.% of glasses grown in different atmospheres measured by EDX.

Tables Icon

Table 2 Mechanical properties of the glasses grown in different atmospheres and the initial glass-ceramic.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H = μ B B g ˜ S
H = μ B B g ˜ S + S A ˜ I
g 1 = 1.93 , g 2 = 1.95 , g 3 = 1.98

Metrics