Abstract

In this work, the influence of using ion beam sputtered mixtures instead of pure materials and the impact of applied post deposition annealing to residual stress is investigated. Single layer pure films and mixtures of Nb2O5 / SiO2 as well as multilayer coatings are examined by the means of residual stress. High residual compressive stress was measured for all as-deposited samples. Pure and mixed monolayer samples were annealed at various temperatures and residual stress was determined after each annealing routine. Residual changes in optical constants, layer thickness and surface roughness upon annealing are examined to explain stress behavior. Obtained data was used to make optimization of high reflectivity structures with completely eliminated residual stress. The proposed method can be used to coat very thin substrates where flatness requirements are essential.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties

Martin Bischoff, Tobias Nowitzki, Oliver Voß, Steffen Wilbrandt, and Olaf Stenzel
Appl. Opt. 53(4) A212-A220 (2014)

Stress compensation by deposition of a nonuniform corrective coating

J. B. Oliver, J. Spaulding, and B. Charles
Appl. Opt. 59(5) A54-A57 (2020)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Tang, C. C. Jaing, K. S. Lee, and C. C. Lee, “Residual stress in Ta2O5-SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47(13), C167–C171 (2008).
    [Crossref] [PubMed]
  2. L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, 2004).
  3. G. N. Strauss, “Mechanical Stress in Optical Coatings,” in Optical Interference Coatings, N. Kaiser, and H. Pulker, eds. (Springer Berlin Heidelberg, 2003).
  4. S. Shigeki, “Temperature dependence of transmission characteristics of multilayer film narrow bandpass filters,” Jpn. J. Appl. Phys. 38(1), 6362–6368 (1999).
    [Crossref]
  5. T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
    [Crossref]
  6. J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov, C. Smith, and R. D. Hand, “Stress compensation in hafnia/silica optical coatings by inclusion of alumina layers,” Opt. Express 20(15), 16596–16610 (2012).
    [Crossref]
  7. B. J. Pond, J. I. Debar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28(14), 2800–2805 (1989).
    [Crossref] [PubMed]
  8. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
    [Crossref] [PubMed]
  9. T. Amotchkina, M. K. Trubetskov, Y. Pervak, L. Veisz, and V. Pervak, “Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice,” Opt. Express 22(24), 30387–30393 (2014).
    [Crossref] [PubMed]
  10. T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
    [Crossref]
  11. M. Ohring, The Materials Science of Thin Films (Academic Press, 1992).
  12. M. Bischoff, T. Nowitzki, O. Voß, S. Wilbrandt, and O. Stenzel, “Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties,” Appl. Opt. 53(4), A212–A220 (2014).
    [Crossref] [PubMed]
  13. A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
    [Crossref]
  14. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41(16), 3211–3217 (2002).
    [Crossref] [PubMed]
  15. “OptiLayer optical coating software,” http://www.optilayer.com/ .
  16. T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
    [Crossref]
  17. G. Stoney, “The Tension of Metallic Films deposited by Electrolysis,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(553), 172–175 (1909).
    [Crossref]
  18. M. Lappschies, M. Jupé, and D. Ristau, “Extension of Ion Beam Sputtered Oxide Mixtures into the UV Spectral Range,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, Tucson, Arizona, 2007), paper. TuA7.
  19. J. T. Brown, “Center wavelength shift dependence on substrate coefficient of thermal expansion for optical thin-film interference filters deposited by ion-beam sputtering,” Appl. Opt. 43(23), 4506–4511 (2004).
    [Crossref] [PubMed]
  20. E. Cetinörgü-Goldenberg, J. E. Klemberg-Sapieha, and L. Martinu, “Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films,” Appl. Opt. 51(27), 6498–6507 (2012).
    [Crossref] [PubMed]
  21. M. J. Weber, Handbook of Optical Materials (Taylor & Francis, 2002).
  22. A. E. Ennos, “Stresses Developed in Optical Film Coatings,” Appl. Opt. 5(1), 51–61 (1966).
    [Crossref] [PubMed]
  23. V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
    [Crossref]

2014 (3)

2012 (3)

2011 (1)

2008 (2)

C. J. Tang, C. C. Jaing, K. S. Lee, and C. C. Lee, “Residual stress in Ta2O5-SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47(13), C167–C171 (2008).
[Crossref] [PubMed]

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

2007 (1)

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

2004 (1)

2002 (2)

R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41(16), 3211–3217 (2002).
[Crossref] [PubMed]

T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
[Crossref]

1999 (1)

S. Shigeki, “Temperature dependence of transmission characteristics of multilayer film narrow bandpass filters,” Jpn. J. Appl. Phys. 38(1), 6362–6368 (1999).
[Crossref]

1989 (1)

1966 (1)

1909 (1)

G. Stoney, “The Tension of Metallic Films deposited by Electrolysis,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(553), 172–175 (1909).
[Crossref]

Amotchkina, T.

Bierden, P.

T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
[Crossref]

Bifano, T. G.

T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
[Crossref]

Bischoff, M.

Brown, J. T.

Buzelis, R.

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

Carniglia, C. K.

Cetinörgü-Goldenberg, E.

Chen, T. C.

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

Chu, C. J.

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

Chuvilin, A.

V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
[Crossref]

Commandré, M.

Debar, J. I.

Drazdys, R.

Ennos, A. E.

Flemming, M.

V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
[Crossref]

Fu, X.

Gallais, L.

Gaspariunas, M.

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

Gatto, A.

Hallbauer, A.

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Hand, R. D.

Ho, C. H.

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

Huber, D.

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Jaing, C. C.

Janicki, V.

V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
[Crossref]

Johnson, H. T.

T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
[Crossref]

Kaiser, N.

Kicas, S.

Klemberg-Sapieha, J. E.

Kozlov, A.

Kunz, A.

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Kupinski, P.

Lambropoulos, J. C.

Lee, C. C.

C. J. Tang, C. C. Jaing, K. S. Lee, and C. C. Lee, “Residual stress in Ta2O5-SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47(13), C167–C171 (2008).
[Crossref] [PubMed]

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

Lee, K. S.

Lelis, M.

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

Mali, R. K.

T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
[Crossref]

Mangote, B.

Martinu, L.

Mažule, L.

Melninkaitis, A.

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
[Crossref] [PubMed]

Mirauskas, J.

Nowitzki, T.

Oliver, J. B.

Papernov, S.

Pervak, V.

Pervak, Y.

Plukis, A.

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

Pond, B. J.

Pulker, H. K.

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Raj, T.

Rigatti, A. L.

Sancho-Parramon, J.

V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
[Crossref]

Schlichtherle, S.

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Schmid, A. W.

Shigeki, S.

S. Shigeki, “Temperature dependence of transmission characteristics of multilayer film narrow bandpass filters,” Jpn. J. Appl. Phys. 38(1), 6362–6368 (1999).
[Crossref]

Sirutkaitis, V.

Smith, C.

Stenzel, O.

Stoney, G.

G. Stoney, “The Tension of Metallic Films deposited by Electrolysis,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(553), 172–175 (1909).
[Crossref]

Strauss, G. N.

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Tang, C. J.

Thielsch, R.

Tolenis, T.

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
[Crossref] [PubMed]

Trubetskov, M. K.

Veisz, L.

Voß, O.

Wilbrandt, S.

Wu, C. C.

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

Yulin, S.

V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
[Crossref]

Zerrad, M.

Appl. Opt. (8)

C. J. Tang, C. C. Jaing, K. S. Lee, and C. C. Lee, “Residual stress in Ta2O5-SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47(13), C167–C171 (2008).
[Crossref] [PubMed]

B. J. Pond, J. I. Debar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28(14), 2800–2805 (1989).
[Crossref] [PubMed]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
[Crossref] [PubMed]

M. Bischoff, T. Nowitzki, O. Voß, S. Wilbrandt, and O. Stenzel, “Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties,” Appl. Opt. 53(4), A212–A220 (2014).
[Crossref] [PubMed]

R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41(16), 3211–3217 (2002).
[Crossref] [PubMed]

J. T. Brown, “Center wavelength shift dependence on substrate coefficient of thermal expansion for optical thin-film interference filters deposited by ion-beam sputtering,” Appl. Opt. 43(23), 4506–4511 (2004).
[Crossref] [PubMed]

E. Cetinörgü-Goldenberg, J. E. Klemberg-Sapieha, and L. Martinu, “Effect of postdeposition annealing on the structure, composition, and the mechanical and optical characteristics of niobium and tantalum oxide films,” Appl. Opt. 51(27), 6498–6507 (2012).
[Crossref] [PubMed]

A. E. Ennos, “Stresses Developed in Optical Film Coatings,” Appl. Opt. 5(1), 51–61 (1966).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. C. Chen, C. J. Chu, C. H. Ho, C. C. Wu, and C. C. Lee, “Determination of stress-optical and thermal-optical coefficients of Nb2O5 thin film material,” J. Appl. Phys. 101(4), 043513 (2007).
[Crossref]

J. Microelectromech. Syst. (1)

T. G. Bifano, H. T. Johnson, P. Bierden, and R. K. Mali, “Elimination of stress-induced curvature in thin-film structures,” J. Microelectromech. Syst. 11(5), 592–597 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Shigeki, “Temperature dependence of transmission characteristics of multilayer film narrow bandpass filters,” Jpn. J. Appl. Phys. 38(1), 6362–6368 (1999).
[Crossref]

Lith. J. Phys. (1)

T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, “Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures,” Lith. J. Phys. 54(2), 99–105 (2014).
[Crossref]

Opt. Express (2)

Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character (1)

G. Stoney, “The Tension of Metallic Films deposited by Electrolysis,” Proc. R. Soc. Lond., A Contain. Pap. Math. Phys. Character 82(553), 172–175 (1909).
[Crossref]

Surf. Coat. Tech. (1)

V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, and A. Chuvilin, “Optical and structural properties of Nb2O5–SiO2 mixtures in thin films,” Surf. Coat. Tech. 206(17), 3650–3657 (2012).
[Crossref]

Thin Solid Films (1)

A. Hallbauer, D. Huber, G. N. Strauss, S. Schlichtherle, A. Kunz, and H. K. Pulker, “Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating,” Thin Solid Films 516(14), 4587–4592 (2008).
[Crossref]

Other (6)

“OptiLayer optical coating software,” http://www.optilayer.com/ .

M. Lappschies, M. Jupé, and D. Ristau, “Extension of Ion Beam Sputtered Oxide Mixtures into the UV Spectral Range,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, Tucson, Arizona, 2007), paper. TuA7.

M. J. Weber, Handbook of Optical Materials (Taylor & Francis, 2002).

L. B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, 2004).

G. N. Strauss, “Mechanical Stress in Optical Coatings,” in Optical Interference Coatings, N. Kaiser, and H. Pulker, eds. (Springer Berlin Heidelberg, 2003).

M. Ohring, The Materials Science of Thin Films (Academic Press, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Process chamber (~1 m3 volume): 1 – drive for substrate rotation, 2 – shutter, 3 – primary ion source, 4 – substrates palette, 5, 6 – target and translation stage, 7 – assist ion source, 8 – gate valve, 9 – high vacuum pump, 10,11 -materials, 12 – joint edge.
Fig. 2
Fig. 2 Transmission spectra of fused silica substrate and single-layer mixtures of Nb2O5 and SiO2 according to volumetric fraction of Nb2O5.
Fig. 3
Fig. 3 Extinction coefficient (a) and refractive index dispersion (b) of Nb2O5 and SiO2 mixtures according to volumetric fraction of Nb2O5.
Fig. 4
Fig. 4 Residual stress according to Nb2O5 fraction in monolayer mixture at different annealing temperatures. AFM measurements of pure Nb2O5 before and after annealing to 500 °C (b).
Fig. 5
Fig. 5 Impact of annealing temperature to residual stress of mirror with optimized mixed materials.
Fig. 6
Fig. 6 Surface mapping of as deposited mirror (a) and after post deposition annealing (b) on 2 mm fused silica sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ= 1 6 ( 1 R 2 - 1 R 1 ) E 1-ν t s 2 t f ,
σ M = σ H t H + σ L t L t H + t L ,

Metrics