Abstract

Silica nanoparticles were produced from germanosilicate glasses by KrF laser irradiation. The samples were investigated by cathodoluminescence and scanning electron microscopy, providing the presence of nanoparticles with size from tens up to hundreds of nanometers. The emission of the Germanium lone pair center is preserved in the nanoparticles and atomic force microscopy revealed the presence of no spherical particles with a size smaller than ~4 nm. The absorption coefficient enhancement induced by Ge doping is reputed fundamental to facilitate the nanoparticles production. This procedure can be applied to other co-doped silica materials to tune the nanoparticles features.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evolution of Photo-induced defects in Ge-doped fiber/preform: influence of the drawing

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane
Opt. Express 19(12) 11680-11690 (2011)

Ge(2), Ge(1) and Ge-E′ centers in irradiated Ge-doped silica: a first-principles EPR study

Luigi Giacomazzi, L. Martin-Samos, A. Boukenter, Y. Ouerdane, S. Girard, and N. Richard
Opt. Mater. Express 5(5) 1054-1064 (2015)

Twofold coordinated Ge defects induced by gamma-ray irradiation in Ge-doped SiO2

A. Alessi, S. Agnello, F. M. Gelardi, S. Grandi, A. Magistris, and R. Boscaino
Opt. Express 16(7) 4895-4900 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Logothetidis, Nanostructured Materials and Their Applications (Springer-Verlag, 2012).
  2. M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20(22), 4225–4241 (2008).
    [Crossref]
  3. D. Knopp, D. Tang, and R. Niessner, “Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles,” Anal. Chim. Acta 647(1), 14–30 (2009).
    [Crossref] [PubMed]
  4. L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
    [Crossref]
  5. D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
    [Crossref] [PubMed]
  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  7. L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold−silica core−shell particles,” Langmuir 12(18), 4329–4335 (1996).
    [Crossref]
  8. T.-F. Tseng and J.-Y. Wu, “Preparation and structural characterization of novel nanohybrids by cationic 3D Silica nanoparticles sandwiched between 2D anionic montmorillonite clay through electrostatic attraction,” J. Phys. Chem. C 113(30), 13036–13044 (2009).
    [Crossref]
  9. W. L. Zhang and H. J. Choi, “Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics,” Langmuir 28(17), 7055–7062 (2012).
    [Crossref] [PubMed]
  10. D. Arcos and M. Vallet-Regí, “Bioceramics for drug delivery,” Acta Mater. 61(3), 890–911 (2013).
    [Crossref]
  11. H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
    [Crossref] [PubMed]
  12. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [Crossref]
  13. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
    [Crossref]
  14. J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys., A Mater. Sci. Process. 54(4), 363–368 (1992).
    [Crossref]
  15. J. H. Brannon, “Micropatterning of surfaces by excimer laser projection,” J. Vac. Sci. Technol. B 7(5), 1064–1071 (1989).
    [Crossref]
  16. P. Schaaf, Laser Processing of Materials Fundamentals, Applications and Developments (Springer, 2010).
  17. M. Bass, Laser Materials Processing (North-Holland Publishing Company, 1983).
  18. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
    [Crossref]
  19. D. Von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996).
    [Crossref]
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  21. L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
    [Crossref]
  22. K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere,” J. Appl. Phys. 68(6), 2713–2718 (1990).
    [Crossref]
  23. A. Alessi, S. Agnello, Y. Ouerdane, and F. M. Gelardi, “Dependence of the emission properties of the germanium lone pair center on Ge doping of silica,” J. Phys. Condens. Matter 23(1), 015903 (2011).
    [Crossref] [PubMed]
  24. A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
    [Crossref] [PubMed]
  25. A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
    [Crossref]
  26. D. L. Griscom, “On the natures of radiation-induced point defects in GeO2-SiO2 glasses: reevaluation of a 26-year-old ESR and optical data set,” Opt. Mater. Express 1(3), 400–412 (2011).
    [Crossref]
  27. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensors Technology, Advanced Application, Bragg Gratings and Distributed Sensors (Kluwer Academic Publishers, 2000).
  28. M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
    [Crossref]
  29. M. Takahashi, T. Uchino, and T. Yoko, “Correlation between Macro- and Microstructural Changes in Ge:SiO2 and SiO2 Glasses under Intense Ultraviolet Irradiation,” J. Am. Ceram. Soc. 85(5), 1089–1092 (2002).
    [Crossref]
  30. N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
    [Crossref]
  31. M. Nakamura, M. Shono, and K. Ishimura, “Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles,” Anal. Chem. 79(17), 6507–6514 (2007).
    [Crossref] [PubMed]
  32. P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
    [Crossref] [PubMed]
  33. E. Vella and R. Boscaino, “Structural disorder and silanol groups content in amorphous SiO2,” Phys. Rev. B 79(8), 085204 (2009).
    [Crossref]
  34. F. Messina, M. Cannas, and R. Boscaino, “Generation of defects in amorphous SiO2 assisted by two-step absorption on impurity sites,” J. Phys. Condens. Matter 20(27), 275210 (2008).
    [Crossref] [PubMed]
  35. A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
    [Crossref]

2016 (1)

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

2015 (2)

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

2014 (1)

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

2013 (2)

D. Arcos and M. Vallet-Regí, “Bioceramics for drug delivery,” Acta Mater. 61(3), 890–911 (2013).
[Crossref]

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

2012 (1)

W. L. Zhang and H. J. Choi, “Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics,” Langmuir 28(17), 7055–7062 (2012).
[Crossref] [PubMed]

2011 (3)

2009 (4)

E. Vella and R. Boscaino, “Structural disorder and silanol groups content in amorphous SiO2,” Phys. Rev. B 79(8), 085204 (2009).
[Crossref]

T.-F. Tseng and J.-Y. Wu, “Preparation and structural characterization of novel nanohybrids by cationic 3D Silica nanoparticles sandwiched between 2D anionic montmorillonite clay through electrostatic attraction,” J. Phys. Chem. C 113(30), 13036–13044 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

D. Knopp, D. Tang, and R. Niessner, “Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles,” Anal. Chim. Acta 647(1), 14–30 (2009).
[Crossref] [PubMed]

2008 (2)

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20(22), 4225–4241 (2008).
[Crossref]

F. Messina, M. Cannas, and R. Boscaino, “Generation of defects in amorphous SiO2 assisted by two-step absorption on impurity sites,” J. Phys. Condens. Matter 20(27), 275210 (2008).
[Crossref] [PubMed]

2007 (2)

M. Nakamura, M. Shono, and K. Ishimura, “Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles,” Anal. Chem. 79(17), 6507–6514 (2007).
[Crossref] [PubMed]

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

2006 (1)

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

2002 (2)

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

M. Takahashi, T. Uchino, and T. Yoko, “Correlation between Macro- and Microstructural Changes in Ge:SiO2 and SiO2 Glasses under Intense Ultraviolet Irradiation,” J. Am. Ceram. Soc. 85(5), 1089–1092 (2002).
[Crossref]

1999 (1)

M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
[Crossref]

1997 (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

1996 (3)

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold−silica core−shell particles,” Langmuir 12(18), 4329–4335 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

D. Von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996).
[Crossref]

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

1992 (2)

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys., A Mater. Sci. Process. 54(4), 363–368 (1992).
[Crossref]

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

1990 (1)

K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere,” J. Appl. Phys. 68(6), 2713–2718 (1990).
[Crossref]

1989 (1)

J. H. Brannon, “Micropatterning of surfaces by excimer laser projection,” J. Vac. Sci. Technol. B 7(5), 1064–1071 (1989).
[Crossref]

Agnello, S.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

A. Alessi, S. Agnello, Y. Ouerdane, and F. M. Gelardi, “Dependence of the emission properties of the germanium lone pair center on Ge doping of silica,” J. Phys. Condens. Matter 23(1), 015903 (2011).
[Crossref] [PubMed]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
[Crossref] [PubMed]

Albert, J.

M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
[Crossref]

Alessi, A.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

A. Alessi, S. Agnello, Y. Ouerdane, and F. M. Gelardi, “Dependence of the emission properties of the germanium lone pair center on Ge doping of silica,” J. Phys. Condens. Matter 23(1), 015903 (2011).
[Crossref] [PubMed]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
[Crossref] [PubMed]

Arcos, D.

D. Arcos and M. Vallet-Regí, “Bioceramics for drug delivery,” Acta Mater. 61(3), 890–911 (2013).
[Crossref]

Arduini, M.

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

Awazu, K.

M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
[Crossref]

K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere,” J. Appl. Phys. 68(6), 2713–2718 (1990).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Biddinger, P.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Boscaino, R.

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

E. Vella and R. Boscaino, “Structural disorder and silanol groups content in amorphous SiO2,” Phys. Rev. B 79(8), 085204 (2009).
[Crossref]

F. Messina, M. Cannas, and R. Boscaino, “Generation of defects in amorphous SiO2 assisted by two-step absorption on impurity sites,” J. Phys. Condens. Matter 20(27), 275210 (2008).
[Crossref] [PubMed]

Boukenter, A.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
[Crossref] [PubMed]

Bozon-Verduraz, F.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

Brannon, J. H.

J. H. Brannon, “Micropatterning of surfaces by excimer laser projection,” J. Vac. Sci. Technol. B 7(5), 1064–1071 (1989).
[Crossref]

Brebner, J. L.

M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
[Crossref]

Buscarino, G.

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

Cannas, M.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
[Crossref] [PubMed]

F. Messina, M. Cannas, and R. Boscaino, “Generation of defects in amorphous SiO2 assisted by two-step absorption on impurity sites,” J. Phys. Condens. Matter 20(27), 275210 (2008).
[Crossref] [PubMed]

Chen, H.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Chen, X.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Choi, H. J.

W. L. Zhang and H. J. Choi, “Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics,” Langmuir 28(17), 7055–7062 (2012).
[Crossref] [PubMed]

Chuang, Y.-J.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Cui, Y.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

De, M.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20(22), 4225–4241 (2008).
[Crossref]

Di Francesca, D.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

Dolgaev, S. I.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

Essid, M.

M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
[Crossref]

Fanetti, M.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Gelardi, F. M.

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

A. Alessi, S. Agnello, Y. Ouerdane, and F. M. Gelardi, “Dependence of the emission properties of the germanium lone pair center on Ge doping of silica,” J. Phys. Condens. Matter 23(1), 015903 (2011).
[Crossref] [PubMed]

Ghosh, P. S.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20(22), 4225–4241 (2008).
[Crossref]

Giacomazzi, L.

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

Giersig, M.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold−silica core−shell particles,” Langmuir 12(18), 4329–4335 (1996).
[Crossref]

Girard, S.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
[Crossref] [PubMed]

Griscom, D. L.

Hao, Z.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hilliard, L. R.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Hsu, P.-C.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

Ihlemann, J.

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys., A Mater. Sci. Process. 54(4), 363–368 (1992).
[Crossref]

Iovino, G.

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

Ishimura, K.

M. Nakamura, M. Shono, and K. Ishimura, “Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles,” Anal. Chem. 79(17), 6507–6514 (2007).
[Crossref] [PubMed]

Kawazoe, H.

K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere,” J. Appl. Phys. 68(6), 2713–2718 (1990).
[Crossref]

Knopp, D.

D. Knopp, D. Tang, and R. Niessner, “Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles,” Anal. Chim. Acta 647(1), 14–30 (2009).
[Crossref] [PubMed]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

Lee, H. R.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

Lin, D.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

Liu, F.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Liu, K.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

Liu, W.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

Liu, Y.

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

Liz-Marzán, L. M.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold−silica core−shell particles,” Langmuir 12(18), 4329–4335 (1996).
[Crossref]

Mancin, F.

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

Marcandella, C.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

Martin-Samos, L.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

Messina, F.

F. Messina, M. Cannas, and R. Boscaino, “Generation of defects in amorphous SiO2 assisted by two-step absorption on impurity sites,” J. Phys. Condens. Matter 20(27), 275210 (2008).
[Crossref] [PubMed]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

Mulvaney, P.

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold−silica core−shell particles,” Langmuir 12(18), 4329–4335 (1996).
[Crossref]

Nakamura, M.

M. Nakamura, M. Shono, and K. Ishimura, “Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles,” Anal. Chem. 79(17), 6507–6514 (2007).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Niessner, R.

D. Knopp, D. Tang, and R. Niessner, “Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles,” Anal. Chim. Acta 647(1), 14–30 (2009).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Ouerdane, Y.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

A. Alessi, S. Girard, M. Cannas, S. Agnello, A. Boukenter, and Y. Ouerdane, “Evolution of photo-induced defects in Ge-doped fiber/preform: influence of the drawing,” Opt. Express 19(12), 11680–11690 (2011).
[Crossref] [PubMed]

A. Alessi, S. Agnello, Y. Ouerdane, and F. M. Gelardi, “Dependence of the emission properties of the germanium lone pair center on Ge doping of silica,” J. Phys. Condens. Matter 23(1), 015903 (2011).
[Crossref] [PubMed]

Paillet, P.

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

Pan, Z.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rampazzo, E.

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

Reghioua, I.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

Richard, N.

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

Rotello, V. M.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20(22), 4225–4241 (2008).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Santra, S.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Schüler, H.

Shafeev, G. A.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Shen, B.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Shono, M.

M. Nakamura, M. Shono, and K. Ishimura, “Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles,” Anal. Chem. 79(17), 6507–6514 (2007).
[Crossref] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Simakin, A. V.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

Simon, P.

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys., A Mater. Sci. Process. 54(4), 363–368 (1992).
[Crossref]

Skuja, L.

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

Smith, J. E.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Takahashi, M.

M. Takahashi, T. Uchino, and T. Yoko, “Correlation between Macro- and Microstructural Changes in Ge:SiO2 and SiO2 Glasses under Intense Ultraviolet Irradiation,” J. Am. Ceram. Soc. 85(5), 1089–1092 (2002).
[Crossref]

Tan, W.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Tang, D.

D. Knopp, D. Tang, and R. Niessner, “Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles,” Anal. Chim. Acta 647(1), 14–30 (2009).
[Crossref] [PubMed]

Tecilla, P.

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

Teolato, P.

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

Tonellato, U.

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

Tseng, T.-F.

T.-F. Tseng and J.-Y. Wu, “Preparation and structural characterization of novel nanohybrids by cationic 3D Silica nanoparticles sandwiched between 2D anionic montmorillonite clay through electrostatic attraction,” J. Phys. Chem. C 113(30), 13036–13044 (2009).
[Crossref]

Uchino, T.

M. Takahashi, T. Uchino, and T. Yoko, “Correlation between Macro- and Microstructural Changes in Ge:SiO2 and SiO2 Glasses under Intense Ultraviolet Irradiation,” J. Am. Ceram. Soc. 85(5), 1089–1092 (2002).
[Crossref]

Vallet-Regí, M.

D. Arcos and M. Vallet-Regí, “Bioceramics for drug delivery,” Acta Mater. 61(3), 890–911 (2013).
[Crossref]

Vella, E.

E. Vella and R. Boscaino, “Structural disorder and silanol groups content in amorphous SiO2,” Phys. Rev. B 79(8), 085204 (2009).
[Crossref]

Von der Linde, D.

Voronov, V. V.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

Wang, G. D.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Wang, K.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Wang, L.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Wolff, B.

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys., A Mater. Sci. Process. 54(4), 363–368 (1992).
[Crossref]

Wu, J.-Y.

T.-F. Tseng and J.-Y. Wu, “Preparation and structural characterization of novel nanohybrids by cationic 3D Silica nanoparticles sandwiched between 2D anionic montmorillonite clay through electrostatic attraction,” J. Phys. Chem. C 113(30), 13036–13044 (2009).
[Crossref]

Wu, Y.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Xie, J.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Yamane, M.

K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere,” J. Appl. Phys. 68(6), 2713–2718 (1990).
[Crossref]

Yoko, T.

M. Takahashi, T. Uchino, and T. Yoko, “Correlation between Macro- and Microstructural Changes in Ge:SiO2 and SiO2 Glasses under Intense Ultraviolet Irradiation,” J. Am. Ceram. Soc. 85(5), 1089–1092 (2002).
[Crossref]

Zhang, W. L.

W. L. Zhang and H. J. Choi, “Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics,” Langmuir 28(17), 7055–7062 (2012).
[Crossref] [PubMed]

Zhao, X.

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

Zhen, Z.

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Acta Mater. (1)

D. Arcos and M. Vallet-Regí, “Bioceramics for drug delivery,” Acta Mater. 61(3), 890–911 (2013).
[Crossref]

Adv. Mater. (1)

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. 20(22), 4225–4241 (2008).
[Crossref]

Anal. Chem. (2)

L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, “Watching silica nanoparticles glow in the biological world,” Anal. Chem. 78(3), 646–654 (2006).
[Crossref]

M. Nakamura, M. Shono, and K. Ishimura, “Synthesis, characterization, and biological applications of multifluorescent silica nanoparticles,” Anal. Chem. 79(17), 6507–6514 (2007).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

D. Knopp, D. Tang, and R. Niessner, “Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles,” Anal. Chim. Acta 647(1), 14–30 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071 (1994).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys., A Mater. Sci. Process. 54(4), 363–368 (1992).
[Crossref]

Appl. Surf. Sci. (1)

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186(1-4), 546–551 (2002).
[Crossref]

Chemistry (1)

P. Teolato, E. Rampazzo, M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, “Silica nanoparticles for fluorescence sensing of Zn(II): exploring the covalent strategy,” Chemistry 13(8), 2238–2245 (2007).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

N. Richard, S. Girard, L. Giacomazzi, L. Martin-Samos, D. Di Francesca, C. Marcandella, A. Alessi, P. Paillet, S. Agnello, A. Boukenter, Y. Ouerdane, M. Cannas, and R. Boscaino, “Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers,” IEEE Trans. Nucl. Sci. 61(4), 1819–1825 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

M. Takahashi, T. Uchino, and T. Yoko, “Correlation between Macro- and Microstructural Changes in Ge:SiO2 and SiO2 Glasses under Intense Ultraviolet Irradiation,” J. Am. Ceram. Soc. 85(5), 1089–1092 (2002).
[Crossref]

J. Appl. Phys. (2)

K. Awazu, H. Kawazoe, and M. Yamane, “Simultaneous generation of optical absorption bands at 5.14 and 0.452 eV in 9 SiO2:GeO2 glasses heated under an H2 atmosphere,” J. Appl. Phys. 68(6), 2713–2718 (1990).
[Crossref]

A. Alessi, S. Girard, I. Reghioua, M. Fanetti, D. Di Francesca, S. Agnello, M. Cannas, C. Marcandella, L. Martin-Samos, N. Richard, A. Boukenter, and Y. Ouerdane, “Gamma and x-ray irradiation effects on different Ge and Ge/F doped optical fibers,” J. Appl. Phys. 118(8), 085901 (2015).
[Crossref]

J. Non-Cryst. Solids (2)

L. Skuja, “Isoelectronic series of twofold coordinated Si, Ge, and Sn atoms in glassy SiO2: a luminescence study,” J. Non-Cryst. Solids 149(1-2), 77–95 (1992).
[Crossref]

M. Essid, J. Albert, J. L. Brebner, and K. Awazu, “Correlation between oxygen-deficient center concentration and KrF excimer laser induced defects in thermally annealed Ge-doped optical fiber preforms,” J. Non-Cryst. Solids 246(1-2), 39–45 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (2)

A. Alessi, G. Iovino, G. Buscarino, S. Agnello, and F. M. Gelardi, “Entrapping of O2 molecules in nanostructured silica probed by photoluminescence,” J. Phys. Chem. C 117(6), 2616–2622 (2013).
[Crossref]

T.-F. Tseng and J.-Y. Wu, “Preparation and structural characterization of novel nanohybrids by cationic 3D Silica nanoparticles sandwiched between 2D anionic montmorillonite clay through electrostatic attraction,” J. Phys. Chem. C 113(30), 13036–13044 (2009).
[Crossref]

J. Phys. Condens. Matter (2)

F. Messina, M. Cannas, and R. Boscaino, “Generation of defects in amorphous SiO2 assisted by two-step absorption on impurity sites,” J. Phys. Condens. Matter 20(27), 275210 (2008).
[Crossref] [PubMed]

A. Alessi, S. Agnello, Y. Ouerdane, and F. M. Gelardi, “Dependence of the emission properties of the germanium lone pair center on Ge doping of silica,” J. Phys. Condens. Matter 23(1), 015903 (2011).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

J. H. Brannon, “Micropatterning of surfaces by excimer laser projection,” J. Vac. Sci. Technol. B 7(5), 1064–1071 (1989).
[Crossref]

Langmuir (2)

W. L. Zhang and H. J. Choi, “Silica-graphene oxide hybrid composite particles and their electroresponsive characteristics,” Langmuir 28(17), 7055–7062 (2012).
[Crossref] [PubMed]

L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold−silica core−shell particles,” Langmuir 12(18), 4329–4335 (1996).
[Crossref]

Nano Lett. (2)

D. Lin, W. Liu, Y. Liu, H. R. Lee, P.-C. Hsu, K. Liu, and Y. Cui, “High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide),” Nano Lett. 16(1), 459–465 (2016).
[Crossref] [PubMed]

H. Chen, G. D. Wang, Y.-J. Chuang, Z. Zhen, X. Chen, P. Biddinger, Z. Hao, F. Liu, B. Shen, Z. Pan, and J. Xie, “Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment,” Nano Lett. 15(4), 2249–2256 (2015).
[Crossref] [PubMed]

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

E. Vella and R. Boscaino, “Structural disorder and silanol groups content in amorphous SiO2,” Phys. Rev. B 79(8), 085204 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Other (4)

K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensors Technology, Advanced Application, Bragg Gratings and Distributed Sensors (Kluwer Academic Publishers, 2000).

S. Logothetidis, Nanostructured Materials and Their Applications (Springer-Verlag, 2012).

P. Schaaf, Laser Processing of Materials Fundamentals, Applications and Developments (Springer, 2010).

M. Bass, Laser Materials Processing (North-Holland Publishing Company, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) SEM image (~2.4 × 1.8 µm) of the Ge8powder; b) panchromatic CL image (~2.4 × 1.8 µm) of the same zone illustrated in panel a, the red square highlights the region were we performed the Si signal EDX image of panel d; c) (▬) CL spectrum acquired in the center of the red square of panel b and (▬) GLPC spectrum recorded in a Ge doped optical fiber; d) Si EDX map acquired in the area marked in red in b).
Fig. 2
Fig. 2 a) SEM image (~6.9 × 5.2 µm) of the Ge20 powder; b) panchromatic CL image (~7 × 5.2 µm) of the same; c) CL spectrum of the Ge20 sample and SEM image of the zone (~1.8 × 1.3 µm) where the spectrum was recorded (scale bar 100 nm); d) SEM image of the Ge20 powder showing a cluster of nanoparticles, with EDX map of the Si signal (top inset) and of the Ge signal (bottom inset) acquired on the same cluster.
Fig. 3
Fig. 3 AFM images recorded for the powder obtained by the KrF laser irradiation of the Ge8 glass (panel a) and Ge20 (panel b).
Fig. 4
Fig. 4 Optical absorption spectrum recorded for a Ge20 sample having a thickness of 0.3 mm.

Metrics