Abstract

We investigate the effect of the roughness of thin silver films on the performance of sensors that exploit metal enhanced fluorescence (MEF). Fluorescence enhancement of dye molecules of up to 47 times was observed on planar glass substrates coated with metal films of higher roughness of around 8 nm. We also study the fluorescence enhancement on the rough silver films implemented on a side of an optical fiber and analyze its dependence on the thickness of the metal. A maximum enhancement factor of 15 was demonstrated for thinner coatings where the film could be considered as a layer of particles. The chemical electroless plating technique used here to produce films with desired roughness is a low cost simple alternative to complex procedures that are currently used for fabrication of nanostructured metal coatings on optical fibers for MEF.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence plasmonic enhancement of FITC labeled PS nanoparticles coupled to silver island films

Huixia Yang, Xiaoqiong Qi, Banghong Zhang, Hui Wang, and Liang Xie
Appl. Opt. 55(20) 5387-5392 (2016)

Metal-enhanced fluorescence of an organic fluorophore using gold particles

Jian Zhang and Joseph R. Lakowicz
Opt. Express 15(5) 2598-2606 (2007)

Self-optimized metal coatings for fiber plasmonics by electroless deposition

A. Bialiayeu, C. Caucheteur, N. Ahamad, A. Ianoul, and J. Albert
Opt. Express 19(20) 18742-18753 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  2. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
    [Crossref] [PubMed]
  3. C. D. Geddes, Metal-Enhanced Fluorescence (John Wiley & Sons, 2010).
  4. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [Crossref] [PubMed]
  5. C. D. Geddes and J. R. Lakowicz, “Topics in Fluorescence Spectroscopy vol. 8: Radiative Decay Engineering (Springer, 2007),” Phys. Rep. 113, 195–287 (1984).
  6. A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
    [Crossref]
  7. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
    [Crossref] [PubMed]
  8. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
    [Crossref] [PubMed]
  9. K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
    [Crossref] [PubMed]
  10. A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
    [Crossref] [PubMed]
  11. K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
    [Crossref] [PubMed]
  12. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [Crossref] [PubMed]
  13. Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
    [Crossref]
  14. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
    [Crossref]
  15. K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
    [Crossref] [PubMed]
  16. D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15(38), 15709–15726 (2013).
    [Crossref] [PubMed]
  17. X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
    [Crossref]
  18. K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54(14), 1559–1562 (1985).
    [Crossref] [PubMed]
  19. J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
    [Crossref] [PubMed]
  20. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480–6487 (2007).
    [Crossref] [PubMed]
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer 1988).
  22. T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
    [Crossref]
  23. M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express 17(7), 5867–5878 (2009).
    [Crossref] [PubMed]
  24. A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
    [Crossref] [PubMed]
  25. B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
    [PubMed]
  26. B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
    [Crossref]
  27. J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
    [Crossref]
  28. R. S. Sennett and G. D. Scott, “The structure of evaporated metal films and their optical properties,” J. Opt. Soc. Am. 40(4), 203–211 (1950).
    [Crossref]
  29. E. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).
  30. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [Crossref]
  31. F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
    [Crossref]
  32. B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
    [Crossref]
  33. A. K. Sharma and B. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fib. Tech. 12(1), 87–100 (2006).
    [Crossref]
  34. J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
    [Crossref]
  35. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  36. P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
    [Crossref] [PubMed]
  37. H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
    [Crossref] [PubMed]
  38. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
    [Crossref]

2015 (1)

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

2014 (1)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

2013 (4)

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15(38), 15709–15726 (2013).
[Crossref] [PubMed]

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
[Crossref]

2012 (2)

P. Pavaskar, J. Theiss, and S. B. Cronin, “Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles,” Opt. Express 20(13), 14656–14662 (2012).
[Crossref] [PubMed]

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

2011 (5)

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
[Crossref]

2009 (2)

M. Y. Ng and W. C. Liu, “Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles,” Opt. Express 17(7), 5867–5878 (2009).
[Crossref] [PubMed]

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

2008 (2)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
[Crossref] [PubMed]

2007 (1)

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480–6487 (2007).
[Crossref] [PubMed]

2006 (1)

A. K. Sharma and B. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fib. Tech. 12(1), 87–100 (2006).
[Crossref]

2005 (4)

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[Crossref] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

2004 (1)

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

2002 (2)

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

2001 (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[Crossref] [PubMed]

1998 (1)

1997 (2)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

1985 (1)

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54(14), 1559–1562 (1985).
[Crossref] [PubMed]

1984 (1)

C. D. Geddes and J. R. Lakowicz, “Topics in Fluorescence Spectroscopy vol. 8: Radiative Decay Engineering (Springer, 2007),” Phys. Rep. 113, 195–287 (1984).

1981 (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

1950 (1)

Adam, P.

Arya, K.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54(14), 1559–1562 (1985).
[Crossref] [PubMed]

Aslan, K.

K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
[Crossref] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[Crossref] [PubMed]

Barber, P. W.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Bauch, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

Birman, J. L.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54(14), 1559–1562 (1985).
[Crossref] [PubMed]

Bishop, E. S.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

Boehm, J.

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
[Crossref]

Brazzatti, J.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Cang, H.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Caruso, F.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Casas-Finet, J. R.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

Centeno, A.

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15(38), 15709–15726 (2013).
[Crossref] [PubMed]

Chan, C. C.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Chang, R. K.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Chen, Q.-D.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480–6487 (2007).
[Crossref] [PubMed]

Cronin, S. B.

D’Auria, S.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Darvill, D.

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15(38), 15709–15726 (2013).
[Crossref] [PubMed]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Djurišic, A. B.

Dostálek, J.

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Dostàlek, J.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

Dragan, A. I.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

Duan, Z.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
[Crossref]

Elazar, J. M.

Fang, J.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Feng, A. L.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

François, A.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
[Crossref]

J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
[Crossref]

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

Furlong, D. N.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Gao, B. R.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Geddes, C. D.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
[Crossref] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[Crossref] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Topics in Fluorescence Spectroscopy vol. 8: Radiative Decay Engineering (Springer, 2007),” Phys. Rep. 113, 195–287 (1984).

Gladden, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Gryczynski, I.

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Gupta, B.

A. K. Sharma and B. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fib. Tech. 12(1), 87–100 (2006).
[Crossref]

Gupta, B. D.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Hanni, P.

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

Hao, Y.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Ho, H.-P.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Hoffmann, P.

B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
[Crossref]

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Homola, J.

Jiang, Y.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Jin, Y.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Johansson, M. L.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Kambhampati, D.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Klingler-Hoffmann, M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Klitzing, R.

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

Knoll, W.

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Kok, T.

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

Labno, A.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480–6487 (2007).
[Crossref] [PubMed]

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[Crossref] [PubMed]

C. D. Geddes and J. R. Lakowicz, “Topics in Fluorescence Spectroscopy vol. 8: Radiative Decay Engineering (Springer, 2007),” Phys. Rep. 113, 195–287 (1984).

Leonenko, Z.

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[Crossref] [PubMed]

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

Li, H.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Lin, M.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Liu, D.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Liu, H.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Liu, M.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Liu, W. C.

Liu, Y.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Lu, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Lu, T. J.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Majewski, M. L.

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Malyn, S. N.

K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
[Crossref] [PubMed]

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

McGivney, J.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

Messinger, B. J.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Monro, T.

J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
[Crossref]

Monro, T. M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
[Crossref]

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

Neumann, T.

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Ng, M. Y.

Niikura, K.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Oh, S. Y.

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

Okahata, Y.

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Pavaskar, P.

Penno, M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Rakic, A. D.

Ray, K.

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480–6487 (2007).
[Crossref] [PubMed]

Rehfeldt, F.

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

Schenerman, M. A.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

Sciacca, B.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
[Crossref]

Scott, G. D.

Sennett, R. S.

Sharma, A. K.

A. K. Sharma and B. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fib. Tech. 12(1), 87–100 (2006).
[Crossref]

Shen, Y.

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Singamaneni, S.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Strouse, R. J.

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

Su, Z. B.

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54(14), 1559–1562 (1985).
[Crossref] [PubMed]

Sun, H.-B.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Tanaka, M.

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

Theiss, J.

Tian, L.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Toma, K.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

Toma, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

Vala, M.

Verma, R. K.

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

von Raben, K. U.

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Wang, H.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Wang, H. Y.

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Wong, J. E.

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

Xie, F.

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15(38), 15709–15726 (2013).
[Crossref] [PubMed]

Xu, F.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Yin, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Yong, D.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

You, M. L.

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Yu, X.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Zhang, H.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Zhang, J.

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

Zhang, Q.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

Zhang, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Zhang, Y.

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

T. Neumann, M. L. Johansson, D. Kambhampati, and W. Knoll, “Surface-plasmon fluorescence spectroscopy,” Adv. Funct. Mater. 12(9), 575–586 (2002).
[Crossref]

Anal. Biochem. (3)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298(1), 1–24 (2001).
[Crossref] [PubMed]

J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Gryczynski, and I. Gryczynski, “Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer,” Anal. Biochem. 301(2), 261–277 (2002).
[Crossref] [PubMed]

Anal. Chem. (1)

K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Use of aluminum films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480–6487 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

A. François, J. Boehm, S. Y. Oh, T. Kok, and T. M. Monro, “Collection mode surface plasmon fibre sensors: a new biosensing platform,” Biosens. Bioelectron. 26(7), 3154–3159 (2011).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16(1), 55–62 (2005).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. Aslan, S. N. Malyn, Y. Zhang, and C. D. Geddes, “Conversion of just-continuous metallic films to large particulate substrates for metal-enhanced fluorescence,” J. Appl. Phys. 103(8), 84307 (2008).
[Crossref] [PubMed]

J. Fluoresc. (1)

K. Aslan, Z. Leonenko, J. R. Lakowicz, and C. D. Geddes, “Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons,” J. Fluoresc. 15(5), 643–654 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Chem. B (1)

J. Zhang, E. Matveeva, I. Gryczynski, Z. Leonenko, and J. R. Lakowicz, “Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition,” J. Phys. Chem. B 109(16), 7969–7975 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Y. Jiang, H. Y. Wang, H. Wang, B. R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Y. wei Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface plasmon enhanced fluorescence of dye molecules on metal grating films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

J. Sens. (1)

B. D. Gupta and R. K. Verma, “Surface plasmon resonance-based fiber optic sensors: Principle, probe designs, and some applications,” J. Sens. 2009, 1–12 (2009).
[Crossref]

Langmuir (1)

F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, “Ultrathin multilayer polyelectrolyte films on gold: construction and thickness determination,” Langmuir 13(13), 3422–3426 (1997).
[Crossref]

Macromolecules (1)

J. E. Wong, F. Rehfeldt, P. Hanni, M. Tanaka, and R. Klitzing, “Swelling behavior of polyelectrolyte multilayers in saturated water vapor,” Macromolecules 37(19), 7285–7289 (2004).
[Crossref]

Nanomedicine (Lond.) (1)

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Nature (1)

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Fib. Tech. (1)

A. K. Sharma and B. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fib. Tech. 12(1), 87–100 (2006).
[Crossref]

Phys. Chem. Chem. Phys. (1)

D. Darvill, A. Centeno, and F. Xie, “Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology,” Phys. Chem. Chem. Phys. 15(38), 15709–15726 (2013).
[Crossref] [PubMed]

Phys. Rep. (1)

C. D. Geddes and J. R. Lakowicz, “Topics in Fluorescence Spectroscopy vol. 8: Radiative Decay Engineering (Springer, 2007),” Phys. Rep. 113, 195–287 (1984).

Phys. Rev. B (1)

B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, “Local fields at the surface of noble-metal microspheres,” Phys. Rev. B 24(2), 649–657 (1981).
[Crossref]

Phys. Rev. Lett. (1)

K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in surface-enhanced optical phenomena,” Phys. Rev. Lett. 54(14), 1559–1562 (1985).
[Crossref] [PubMed]

Plasmonics (3)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostàlek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref]

A. I. Dragan, E. S. Bishop, J. R. Casas-Finet, R. J. Strouse, J. McGivney, M. A. Schenerman, and C. D. Geddes, “Distance dependence of metal-enhanced fluorescence,” Plasmonics 7(4), 739–744 (2012).
[Crossref]

J. Boehm, A. François, H. Ebendorff-Heidepriem, and T. Monro, “Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors,” Plasmonics 6(1), 133–136 (2011).
[Crossref]

Sci. Rep. (1)

A. L. Feng, M. L. You, L. Tian, S. Singamaneni, M. Liu, Z. Duan, T. J. Lu, F. Xu, and M. Lin, “Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers,” Sci. Rep. 5, 7779 (2015).
[Crossref] [PubMed]

Science (1)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Sens. Actuators B Chem. (2)

B. Sciacca, A. François, P. Hoffmann, and T. M. Monro, “Multiplexing of radiative-surface plasmon resonance for the detection of gastric cancer biomarkers in a single optical fiber,” Sens. Actuators B Chem. 183, 454–458 (2013).
[Crossref]

X. Yu, D. Yong, H. Zhang, H. Li, Y. Zhang, C. C. Chan, H.-P. Ho, H. Liu, and D. Liu, “Plasmonic enhanced fluorescence spectroscopy using side-polished microstructured optical fiber,” Sens. Actuators B Chem. 160(1), 196–201 (2011).
[Crossref]

Other (4)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).

C. D. Geddes, Metal-Enhanced Fluorescence (John Wiley & Sons, 2010).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer 1988).

E. Palik, Handbook of Optical Constants of Solids (Elsevier 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optical setup for surface plasmon fluorescence enhancement analysis on (a) planar substrates; and (b) optical fibers.

Fig. 2
Fig. 2

(a) A typical increase in the angular position of the dip in the reflected spectra corresponding to Surface Plasmon Resonance (SPR) as a function of increasing number of polyelectrolyte layers on a planar substrate; and (b) Fluorescence emission of the dye (solid line) and SPR signal (reflectivity) (dashed line) of a planar substrate. A sample with thermally evaporated coating was used as an example.

Fig. 3
Fig. 3

(a) Dependence of fluorescence enhancement factor of planar substrates coated with silver coating of different surface roughness as a function of PE spacer thickness; and (b) Maximum fluorescence enhancement factor as a function of silver coatings roughness.

Fig. 4
Fig. 4

Normalized scattered SPR signal at each step of the surface functionalization process (PE spacer deposition and dye attachment) on a side of an optical fiber coated with 56 nm silver film. Vertical lines mark the SPR resonant wavelength after dye attachment at around 580 nm (black) and the excitation wavelength of the laser source at 633 nm (red).

Fig. 5
Fig. 5

(a) Fluorescence enhancement factor for varying silver film thickness in fiber samples. Fluorescence enhancement factor above one indicates fluorescence intensity enhancement, below one - reduction of fluorescence intensity; and (b) Fluorescent signal for a fiber coated with 22 nm silver film (solid line), and without metal (dashed line).

Fig. 6
Fig. 6

Particle distribution analysis of thin and thick silver films for 5 × 5 μm sections. Equivalent disk radius (req) of the surface features on (a) 22 nm and (b) 71 nm silver films. Statistics of the grain analysis of the coatings as well as AFM images of surface topography are shown on the insets.

Fig. 7
Fig. 7

(a) Comparison of fluorescence intensities from different locations on a fiber coated with 22 nm Ag film and an uncoated section; and (b) Locations of the spots on the fiber sensor.

Tables (1)

Tables Icon

Table 1 Properties of the different silver films

Metrics