Abstract

Two designs of diamond quarter-wave plates for CO2 lasers, based on the birefringence of sub-wavelength gratings, were manufactured and tested. In one design the grating was etched on the surface of a 300 µm thick polycrystalline diamond substrate. The other consisted of a diamond grating hanging freely in air, suspended at the edges from a silicon frame. The free-hanging design, while more fragile, had several advantages both in terms of fabrication and performance such as a larger grating period, higher transmission, and no need for an antireflective treatment of the backside.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings

Christian Delacroix, Pontus Forsberg, Mikael Karlsson, Dimitri Mawet, Olivier Absil, Charles Hanot, Jean Surdej, and Serge Habraken
Appl. Opt. 51(24) 5897-5902 (2012)

Achromatic terahertz quarter waveplate based on silicon grating

Banghong Zhang and Yandong Gong
Opt. Express 23(11) 14897-14902 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
    [Crossref]
  2. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20(24), 2457–2459 (1995).
    [Crossref] [PubMed]
  3. G. Nordin and P. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
    [Crossref] [PubMed]
  4. C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
    [Crossref] [PubMed]
  5. C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
    [Crossref]
  6. C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).
  7. R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, ed. (Wiley-VCH Verlag, 2013).
  8. L. Pang, M. Nezhad, U. Levy, C.-H. Tsai, and Y. Fainman, “Form-birefringence structure fabrication in GaAs by use of SU-8 as a dry-etching mask,” Appl. Opt. 44(12), 2377–2381 (2005).
    [Crossref] [PubMed]
  9. P. Forsberg and M. Karlsson, “Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides,” Opt. Express 21(3), 2693–2700 (2013).
    [Crossref] [PubMed]
  10. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  11. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
    [Crossref]
  12. P. Forsberg and M. Karlsson, “High aspect ratio optical gratings in diamond,” Diamond Related Materials 34, 19–24 (2013).
    [Crossref]
  13. E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
    [Crossref]
  14. C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
    [Crossref]

2016 (1)

E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
[Crossref]

2014 (1)

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

2013 (3)

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

P. Forsberg and M. Karlsson, “High aspect ratio optical gratings in diamond,” Diamond Related Materials 34, 19–24 (2013).
[Crossref]

P. Forsberg and M. Karlsson, “Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides,” Opt. Express 21(3), 2693–2700 (2013).
[Crossref] [PubMed]

2012 (1)

2008 (1)

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

2005 (1)

1999 (2)

G. Nordin and P. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5(8), 163–168 (1999).
[Crossref] [PubMed]

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

1995 (1)

1983 (1)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
[Crossref]

1981 (1)

Absil, O.

E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
[Crossref]

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Baudoz, P.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

Boccaletti, A.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

Cambril, E.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Carlomagno, B.

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

Cheng, C. C.

Christiaens, V.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

Dawson, M. D.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Deguzman, P.

Delacroix, C.

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Fainman, Y.

Flanders, D. C.

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
[Crossref]

Forsberg, P.

E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
[Crossref]

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

P. Forsberg and M. Karlsson, “Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides,” Opt. Express 21(3), 2693–2700 (2013).
[Crossref] [PubMed]

P. Forsberg and M. Karlsson, “High aspect ratio optical gratings in diamond,” Diamond Related Materials 34, 19–24 (2013).
[Crossref]

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Friel, I.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Gaylord, T. K.

Giovannini, H.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Gu, E.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Habraken, S.

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Hanot, C.

Karlsson, M.

E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
[Crossref]

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

P. Forsberg and M. Karlsson, “Inclined surfaces in diamond: broadband antireflective structures and coupling light through waveguides,” Opt. Express 21(3), 2693–2700 (2013).
[Crossref] [PubMed]

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

P. Forsberg and M. Karlsson, “High aspect ratio optical gratings in diamond,” Diamond Related Materials 34, 19–24 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Kuittinen, M.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

Lee, C. L.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Lemarchand, F.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Levy, U.

Mawet, D.

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Moharam, M. G.

Nezhad, M.

Nordin, G.

Pang, L.

Piron, P.

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

Scarsbrook, G. A.

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

Scherer, A.

Sentenac, A.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Sun, P.-C.

Surdej, J.

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

C. Delacroix, P. Forsberg, M. Karlsson, D. Mawet, O. Absil, C. Hanot, J. Surdej, and S. Habraken, “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Appl. Opt. 51(24), 5897–5902 (2012).
[Crossref] [PubMed]

Tsai, C.-H.

Tyan, R.-C.

Vargas Catalan, E.

E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
[Crossref]

Vartiainen, I.

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

Xu, F.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42(6), 492–494 (1983).
[Crossref]

Astron. Astrophys. (1)

C. Delacroix, O. Absil, P. Forsberg, D. Mawet, V. Christiaens, M. Karlsson, A. Boccaletti, P. Baudoz, M. Kuittinen, I. Vartiainen, J. Surdej, and S. Habraken, “Laboratory demonstration of a mid-infrared AGPM vector vortex coronagraph,” Astron. Astrophys. 553, A98 (2013).
[Crossref]

Diamond Related Materials (3)

P. Forsberg and M. Karlsson, “High aspect ratio optical gratings in diamond,” Diamond Related Materials 34, 19–24 (2013).
[Crossref]

E. Vargas Catalan, P. Forsberg, O. Absil, and M. Karlsson, “Controlling the profile of high aspect ratio gratings in diamond,” Diamond Related Materials 63, 60–68 (2016).
[Crossref]

C. L. Lee, E. Gu, M. D. Dawson, I. Friel, and G. A. Scarsbrook, “Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma,” Diamond Related Materials 17(7-10), 1292–1296 (2008).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

C. Delacroix, O. Absil, B. Carlomagno, P. Piron, P. Forsberg, M. Karlsson, D. Mawet, S. Habraken, and J. Surdej, “Development of a subwavelength grating vortex coronagraph of topological charge 4,” Proc. SPIE 9147, 91478Y (2014).

Other (1)

R. P. Mildren, “Intrinsic Optical Properties of Diamond,” in Optical Engineering of Diamond, R. P. Mildren and J. R. Rabeau, ed. (Wiley-VCH Verlag, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic cross section of a grating. (b) Cross-section of a trapezoidal grating line showing some relevant parameters, and a stepped discretization as used in the RCWA calculations.

Fig. 2
Fig. 2

Maps showing the deviation from quarter wave (90°) phase shift as well as transmission around the optimized designs. The period is 4 µm for the surface grating on the left and 7 µm for the free-hanging grating on the right.

Fig. 3
Fig. 3

SEM micrographs of etched diamond gratings. (a) Cross section of a surface grating with aluminum mask remaining on top. (b) Surface grating. (c) Free-hanging grating where it meets a crossbar (top). (d) Free-hanging grating with crossbar.

Fig. 4
Fig. 4

Normalized transmission of the mid-IR polarizer as function of the rotation angle for the free-hanging and surface grating diamond QWP. The curves are displaced in angle for visual clarity. On the right: a diagram of the experimental setup.

Metrics