Abstract

Nd/Yb/Ho-doped hexagonal NaYF4 nanocrystals were synthesized and excited at 808 nm to avoid an overheating effect under 980 nm laser excitation. A core/double-shell nanocomposite (NaYF4:Nd/Yb/Ho@SiO2@Ag nanoparticles) was then developed to enhance upconversion luminescence intensity. The fabricated system exhibited a metal-induced effect and was used to determine the influence of SiO2 layer thickness on upconverting optical properties. SiO2 layer with different thicknesses were used to adjust the distance between NaYF4 nanocrystals and the outer layer of Ag nanocrystals. The largest enhancement of upconversion luminescence occurred when 10 nm-thick SiO2 shell was used, with enhancement factors of 15 and 7.5 for green and red emissions, respectively. Results indicated that the degree of luminescence enhancement was correlated with the competition of the three interactions occurred between fluorophores and metal NPs. After coating with Ag nanoparticles, some modifications were found on the upconversion processes of NaYF4 core nanoparticles and the underlying mechanisms were discussed respectively. The controllable upconversion luminescence renders metal-upconverted nanocomposites as suitable for bioassay, bio-imaging, and energy conversion applications, which require high sensitivity and low background.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Preparation and upconversion emission enhancement of SiO2 coated YbPO4: Er3+ inverse opals with Ag nanoparticles

Jun Li, Zhengwen Yang, Zhuangzhuang Chai, Jianbei Qiu, and Zhiguo Song
Opt. Mater. Express 7(10) 3503-3516 (2017)

Plasmon enhanced near-infrared quantum cutting and simulation analysis of β-NaYF4:Tb3+, Yb3+ doped with Ag nanoparticles

Biao Zheng, Lin Lin, Zhuohong Feng, Zhipeng Yu, Zhezhe Wang, Senyuan Xu, and Zhiqiang Zheng
Opt. Mater. Express 7(1) 224-230 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
    [Crossref]
  2. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
    [Crossref]
  3. F. Wang and X. G. Liu, “Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation,” Acc. Chem. Res. 47(4), 1378–1385 (2014).
    [Crossref]
  4. X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater. 11(10), 842–843 (2012).
    [Crossref]
  5. Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
    [Crossref]
  6. S. W. Hao, G. Y. Chen, and C. H. Yang, “Sensing Using Rare-Earth-Doped Upconversion Nanoparticles,” Theranostics 3(5), 331–345 (2013).
    [Crossref]
  7. G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
    [Crossref]
  8. G. Y. Chen, C. H. Yang, and P. N. Prasad, “Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles,” Acc. Chem. Res. 46(7), 1474–1486 (2013).
    [Crossref]
  9. Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
    [Crossref]
  10. G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
    [Crossref]
  11. B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
    [Crossref]
  12. D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
    [Crossref]
  13. P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
    [Crossref]
  14. B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
    [Crossref]
  15. D. K. Chatterjee, A. J. Rufalhah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
    [Crossref]
  16. R. A. Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterial 29(30), 4122–4128 (2008).
    [Crossref]
  17. L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
    [Crossref]
  18. W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
    [Crossref]
  19. J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals,” Nano Lett. 7(3), 847–852 (2007).
    [Crossref]
  20. Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
    [Crossref]
  21. Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
    [Crossref]
  22. D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
    [Crossref]
  23. W. Feng, L. D. Sun, and C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystalsvia a direct assembly method,” Chem. Commun. (Camb.) 29(29), 4393–4395 (2009).
    [Crossref]
  24. H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
    [Crossref]
  25. L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
    [Crossref]
  26. Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
    [Crossref]
  27. N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
    [Crossref]
  28. H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
    [Crossref]
  29. H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
    [Crossref]
  30. S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
    [Crossref]
  31. H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
    [Crossref]
  32. Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
    [Crossref]

2015 (2)

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

2014 (2)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

F. Wang and X. G. Liu, “Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation,” Acc. Chem. Res. 47(4), 1378–1385 (2014).
[Crossref]

2013 (6)

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

S. W. Hao, G. Y. Chen, and C. H. Yang, “Sensing Using Rare-Earth-Doped Upconversion Nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

G. Y. Chen, C. H. Yang, and P. N. Prasad, “Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles,” Acc. Chem. Res. 46(7), 1474–1486 (2013).
[Crossref]

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

2012 (7)

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater. 11(10), 842–843 (2012).
[Crossref]

2011 (7)

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

2010 (2)

S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
[Crossref]

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

2009 (2)

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

W. Feng, L. D. Sun, and C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystalsvia a direct assembly method,” Chem. Commun. (Camb.) 29(29), 4393–4395 (2009).
[Crossref]

2008 (2)

D. K. Chatterjee, A. J. Rufalhah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

R. A. Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterial 29(30), 4122–4128 (2008).
[Crossref]

2007 (2)

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
[Crossref]

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals,” Nano Lett. 7(3), 847–852 (2007).
[Crossref]

Ågren, H.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Andersson-Engels, S.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Boyer, J. C.

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals,” Nano Lett. 7(3), 847–852 (2007).
[Crossref]

Branda, N. R.

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

Bu, W. B.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Capobianco, J. A.

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals,” Nano Lett. 7(3), 847–852 (2007).
[Crossref]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Chang, Y. L.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Chatterjee, D. K.

D. K. Chatterjee, A. J. Rufalhah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

Chen, B. L.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Chen, F.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Chen, G. Y.

S. W. Hao, G. Y. Chen, and C. H. Yang, “Sensing Using Rare-Earth-Doped Upconversion Nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

G. Y. Chen, C. H. Yang, and P. N. Prasad, “Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles,” Acc. Chem. Res. 46(7), 1474–1486 (2013).
[Crossref]

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Chen, J. H.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Chen, X. H.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Chen, X. Y.

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

Chen, Y. Y.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

Cheng, L.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Cheng, Z. Y.

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Chi, D. Z.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Cohen, B. E.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Cuccia, L. A.

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals,” Nano Lett. 7(3), 847–852 (2007).
[Crossref]

Dai, Y. L.

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Deng, R. R.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Duan, X. F.

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

Feng, W.

W. Feng, L. D. Sun, and C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystalsvia a direct assembly method,” Chem. Commun. (Camb.) 29(29), 4393–4395 (2009).
[Crossref]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Giri, N. K.

S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
[Crossref]

Gu, Z. J.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Guo, H. C.

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

Habault, D.

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

Han, G.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Han, Y.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Hao, S. W.

S. W. Hao, G. Y. Chen, and C. H. Yang, “Sensing Using Rare-Earth-Doped Upconversion Nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

He, Q. J.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

He, S. L.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Ho, P. C. L.

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

Hor, T. S. A.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Hou, Z. Y.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Hua, Y. Q.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Huang, S. M.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Huang, S. S.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

Huang, Y.

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

Hummelen, J. C.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Jalil, R. A.

R. A. Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterial 29(30), 4122–4128 (2008).
[Crossref]

Jiang, T.

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

Jin, S.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Kang, X. J.

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Kong, X. G.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Kumar, M.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
[Crossref]

Kutikov, A.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Lee, S. T.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Li, C. X.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Li, F. Y.

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

Li, G. G.

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Li, M.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Li, S. J.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Li, X. D.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Li, Y. G.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Li, Z. P.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Li, Z. Q.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Liang, H. J.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Lin, J.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Liu, B.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

Liu, C.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Liu, G. K.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Liu, G. Y.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Liu, N.

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

Liu, Q. Q.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Liu, X. G.

F. Wang and X. G. Liu, “Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation,” Acc. Chem. Res. 47(4), 1378–1385 (2014).
[Crossref]

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater. 11(10), 842–843 (2012).
[Crossref]

Liu, X. H.

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Liu, X. M.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Liu, X. X.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Liu, Y. S.

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

Liu, Z.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Luo, Y. S.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Ma, E.

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

Ma, P. A.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Ma, P. G.

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

MacDonald, M. A.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Maduro, J. A.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Mahendran, R.

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

Milliron, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Ohulchanskyy, T. Y.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Pandey, R. K.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Patel, N. J.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Peng, C.

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Peng, W. J.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Prasad, P. N.

G. Y. Chen, C. H. Yang, and P. N. Prasad, “Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles,” Acc. Chem. Res. 46(7), 1474–1486 (2013).
[Crossref]

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Pshenichnikov, M. S.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Qian, H. S.

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

Qian, J.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Qin, G. S.

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

Qin, W. P.

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

Rai, D. K.

S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
[Crossref]

Rai, S. B.

S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
[Crossref]

Ren, W. L.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Rufalhah, A. J.

D. K. Chatterjee, A. J. Rufalhah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Scholfield, M.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
[Crossref]

Schuck, P. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Shao, M. W.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Shen, J.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Shi, J. L.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Singh, S. K.

S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
[Crossref]

Somesfalean, G.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Song, J.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Steelant, W.

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
[Crossref]

Sun, L. D.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

W. Feng, L. D. Sun, and C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystalsvia a direct assembly method,” Chem. Commun. (Camb.) 29(29), 4393–4395 (2009).
[Crossref]

Sun, Z.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Tian, G.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Tu, D. T.

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

Tu, L. P.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Urban, J. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Visser, C.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Wang, C.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Wang, D.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Wang, F.

F. Wang and X. G. Liu, “Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation,” Acc. Chem. Res. 47(4), 1378–1385 (2014).
[Crossref]

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Wang, J.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Wang, L. M.

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Wang, Y. F.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Wang, Z. Y.

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Xiao, J. W.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Xie, X. J.

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater. 11(10), 842–843 (2012).
[Crossref]

Xing, G. M.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Xing, H. Y.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Xiong, L. Q.

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

Xiong, Y. J.

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Xu, C. J.

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

Xu, D.

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

Xue, B.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Yan, B.

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

Yan, C. H.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

W. Feng, L. D. Sun, and C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystalsvia a direct assembly method,” Chem. Commun. (Camb.) 29(29), 4393–4395 (2009).
[Crossref]

Yan, L.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Yang, C. H.

G. Y. Chen, C. H. Yang, and P. N. Prasad, “Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles,” Acc. Chem. Res. 46(7), 1474–1486 (2013).
[Crossref]

S. W. Hao, G. Y. Chen, and C. H. Yang, “Sensing Using Rare-Earth-Doped Upconversion Nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

Yang, D. M.

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Yang, K.

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Yang, P. P.

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Yang, T. S.

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

Yang, Y.

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

Ye, X. J.

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Yin, W. Y.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Yuan, J. K.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Zhan, Q. Q.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Zhang, H.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

Zhang, P.

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
[Crossref]

Zhang, S. J.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Zhang, Y.

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

R. A. Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterial 29(30), 4122–4128 (2008).
[Crossref]

D. K. Chatterjee, A. J. Rufalhah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

Zhang, Y. L.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Zhang, Y. X.

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

Zhang, Z. G.

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Zhao, D.

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

Zhao, H. Y.

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Zhao, Y.

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

Zhao, Y. L.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Zheng, X. P.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Zhou, J. C.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Zhou, L. J.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Zhou, L. P.

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Zhu, H. M.

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

Zou, W. Q.

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Acc. Chem. Res. (2)

F. Wang and X. G. Liu, “Multicolor Tuning of Lanthanide-Doped Nanoparticles by Single Wavelength Excitation,” Acc. Chem. Res. 47(4), 1378–1385 (2014).
[Crossref]

G. Y. Chen, C. H. Yang, and P. N. Prasad, “Nanophotonics and Nanochemistry: Controlling the Excitation Dynamics for Frequency Up- and Down-Conversion in Lanthanide-Doped Nanoparticles,” Acc. Chem. Res. 46(7), 1474–1486 (2013).
[Crossref]

ACS Nano (3)

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. P. Li, J. Song, R. K. Pandey, H. Ågren, P. N. Prasad, and G. Han, “(α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging,” ACS Nano 6(9), 8280–8287 (2012).
[Crossref]

Q. Q. Zhan, J. Qian, H. J. Liang, G. Somesfalean, D. Wang, S. L. He, Z. G. Zhang, and S. Andersson-Engels, “Using 915 nm Laser Excited Tm3+/Er3+/Ho3+-Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation,” ACS Nano 5(5), 3744–3757 (2011).
[Crossref]

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou, and C. H. Yan, “Nd3+-Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect,” ACS Nano 7(8), 7200–7206 (2013).
[Crossref]

Adv. Funct. Mater. (1)

Z. Y. Hou, C. X. Li, P. G. Ma, G. G. Li, Z. Y. Cheng, C. Peng, D. M. Yang, P. P. Yang, and J. Lin, “Electrospinning Preparation and Drug-Delivery Properties of an Up-conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite,” Adv. Funct. Mater. 21(12), 2356–2365 (2011).
[Crossref]

Adv. Mater. (1)

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref]

Angew. Chem. Int. Ed. (1)

L. Cheng, K. Yang, Y. G. Li, J. H. Chen, C. Wang, M. W. Shao, S. T. Lee, and Z. Liu, “Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy,” Angew. Chem. Int. Ed. 50(32), 7385–7390 (2011).
[Crossref]

Biomaterial (1)

R. A. Jalil and Y. Zhang, “Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals,” Biomaterial 29(30), 4122–4128 (2008).
[Crossref]

Biomaterials (4)

L. Q. Xiong, T. S. Yang, Y. Yang, C. J. Xu, and F. Y. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31(27), 7078–7085 (2010).
[Crossref]

D. K. Chatterjee, A. J. Rufalhah, and Y. Zhang, “Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals,” Biomaterials 29(7), 937–943 (2008).
[Crossref]

D. M. Yang, X. J. Kang, P. A. Ma, Y. L. Dai, Z. Y. Hou, Z. Y. Cheng, C. X. Li, and J. Lin, “Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery,” Biomaterials 34(5), 1601–1612 (2013).
[Crossref]

H. Y. Xing, W. B. Bu, S. J. Zhang, X. P. Zheng, M. Li, F. Chen, Q. J. He, L. P. Zhou, W. J. Peng, Y. Q. Hua, and J. L. Shi, “Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging,” Biomaterials 33(4), 1079–1089 (2012).
[Crossref]

Chem. Commun. (Camb.) (4)

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

N. Liu, W. P. Qin, G. S. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref]

W. Feng, L. D. Sun, and C. H. Yan, “Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystalsvia a direct assembly method,” Chem. Commun. (Camb.) 29(29), 4393–4395 (2009).
[Crossref]

H. Zhang, D. Xu, Y. Huang, and X. F. Duan, “Highly spectral dependent enhancement of upconversion emission with sputtered gold island films,” Chem. Commun. (Camb.) 47(3), 979–981 (2011).
[Crossref]

J. Am. Chem. Soc. (2)

P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, “Versatile Photosensitizers for Photodynamic Therapy at Infrared Excitation,” J. Am. Chem. Soc. 129(15), 4526–4527 (2007).
[Crossref]

B. Yan, J. C. Boyer, D. Habault, N. R. Branda, and Y. Zhao, “Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles,” J. Am. Chem. Soc. 134(40), 16558–16561 (2012).
[Crossref]

J. Phys. Chem. C (1)

Z. Q. Li, L. M. Wang, Z. Y. Wang, X. H. Liu, and Y. J. Xiong, “Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions,” J. Phys. Chem. C 115(8), 3291–3296 (2011).
[Crossref]

Nano Lett. (1)

J. C. Boyer, L. A. Cuccia, and J. A. Capobianco, “Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals,” Nano Lett. 7(3), 847–852 (2007).
[Crossref]

Nanoscale (3)

D. Wang, B. Xue, X. G. Kong, L. P. Tu, X. M. Liu, Y. L. Zhang, Y. L. Chang, Y. S. Luo, H. Y. Zhao, and H. Zhang, “808 nm driven Nd3+-sensitized upconversion nanostructures for photodynamic therapy and simultaneous fluorescence imaging,” Nanoscale 7(1), 190–197 (2015).
[Crossref]

Y. S. Liu, D. T. Tu, H. M. Zhu, E. Ma, and X. Y. Chen, “Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection,” Nanoscale 5(4), 1369–1384 (2013).
[Crossref]

B. Liu, C. X. Li, P. A. Ma, Y. Y. Chen, Y. X. Zhang, Z. Y. Hou, S. S. Huang, and J. Lin, “Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery,” Nanoscale 7(5), 1839–1848 (2015).
[Crossref]

Nanotechnology (1)

Z. Q. Li, X. D. Li, Q. Q. Liu, X. H. Chen, Z. Sun, C. Liu, X. J. Ye, and S. M. Huang, “Core/shell structured NaYF4:Yb3+/Er3+/Gd3+ nanorods with Au nanoparticles or shells for flexible amorphous silicon solar cells,” Nanotechnology 23(2), 025402 (2012).
[Crossref]

Nat. Mater. (2)

X. J. Xie and X. G. Liu, “Photonics: Upconversion goes broadband,” Nat. Mater. 11(10), 842–843 (2012).
[Crossref]

J. Wang, R. R. Deng, M. A. MacDonald, B. L. Chen, J. K. Yuan, F. Wang, D. Z. Chi, T. S. A. Hor, P. Zhang, G. K. Liu, Y. Han, and X. G. Liu, “Enhancing multiphoton upconversion through energy clustering at sublattice level,” Nat. Mater. 13(2), 157–162 (2013).
[Crossref]

Nat. Nanotechnol. (1)

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “J. J. Urban, D. J. Milliron and B. E. Cohen, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref]

Nat. Photonics (1)

W. Q. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconversion of near-infrared light,” Nat. Photonics 6(8), 560–564 (2012).
[Crossref]

Small (1)

H. S. Qian, H. C. Guo, P. C. L. Ho, R. Mahendran, and Y. Zhang, “Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy,” Small 5(20), 2285–2290 (2009).
[Crossref]

Solid State Sci. (1)

S. K. Singh, N. K. Giri, D. K. Rai, and S. B. Rai, “Enhanced upconversion emission in Er3+-doped tellurite glass containing silver nanoparticles,” Solid State Sci. 12(8), 1480–1483 (2010).
[Crossref]

Theranostics (1)

S. W. Hao, G. Y. Chen, and C. H. Yang, “Sensing Using Rare-Earth-Doped Upconversion Nanoparticles,” Theranostics 3(5), 331–345 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Absorption spectra of water in 600-1060 nm.
Fig. 2
Fig. 2 Room-temperature UC emission spectra of NaYF4:Nd/Ho (5%/2%) NPs and NaYF4:Nd/Yb/Ho (5%/20%/2%) NPs.
Fig. 3
Fig. 3 Schematic illustration of the synthesis of NaYF4:Nd/Yb/Ho@SiO2@Ag core/double-shell nanocomposites.
Fig. 4
Fig. 4 XRD patterns of the NaYF4:Nd/Yb/Ho and NaYF4:Nd/Yb/Ho@SiO2 NPs. All the peaks are consistent with the JCPDS profiles with card number 16-0334.
Fig. 5
Fig. 5 TEM images of prepared NaYF4:Nd/Yb/Ho nanocrystals before shell coating at different magnifications (a-c), histograms of core diameter (d).
Fig. 6
Fig. 6 TEM images of prepared NaYF4:Nd/Yb/Ho nanocrystals after coated with a 20 nm silica layer (a), HRTEM image of a single NaYF4@SiO2(20 nm) nanoparticle (b), after coated with a 10 nm silica layer (c), HRTEM image of a single NaYF4@SiO2(10 nm) nanoparticle (d), after coated with a 5 nm silica layer (e), HRTEM image of a single NaYF4@SiO2(5 nm) nanoparticle (f).
Fig. 7
Fig. 7 TEM image of the as-prepared NaYF4:Nd/Yb/Ho@SiO2(10 nm)@Ag nanostructures at different magnifications (a, b), the HRTEM image of Ag NPs (c), UV-Vis extinction spectra of NaYF4@SiO2(10 nm)@Ag nanocomposites (d).
Fig. 8
Fig. 8 EDS spectra of NaYF4@SiO2(10 nm)@Ag nanostructures. (Note that Cu signals come from the copper grid.)
Fig. 9
Fig. 9 Emission spectra of pure NaYF4:Nd/Yb/Ho nanocrystals and NaYF4@SiO2 core/shell NPs under 808 nm laser excitation. The insets show the digital luminescent photos of pure UCNPs (a), and UCNPs@SiO2(10 nm) (b) under 808 nm laser excitation.
Fig. 10
Fig. 10 Emission spectra of pure NaYF4:Nd/Yb/Ho nanocrystals and NaYF4@SiO2 core/shell NPs under 980 nm laser excitation
Fig. 11
Fig. 11 UC luminescence spectra of the NaYF4@SiO2@Ag NPs with different thickness of SiO2 layer under 808 nm excitation. Insets (a) and (b) display the samples before and after coating with Ag NPs under 808 nm laser excitation, respectively.
Fig. 12
Fig. 12 UC luminescence spectra of the NaYF4@SiO2@Ag NPs with different thickness of SiO2 layer under 980 nm laser excitation.
Fig. 13
Fig. 13 UC emission spectra of the NaYF4 NPs, NaYF4@SiO2(10 nm) NPs and NaYF4@SiO2(10 nm)@Ag NPs under 808 nm laser excitation (a), schematic illustrations of these three types of NPs and their digital luminescent photos (b).
Fig. 14
Fig. 14 Representative UC luminescence decay times of green emissions from NaYF4@SiO2(10 nm) NPs with and without Ag nanostructures.
Fig. 15
Fig. 15 Dependences of UC emission intensity on pumping power under 808 nm laser excitation for NaYF4:Nd/Yb/Ho nanocrystals (a), for NaYF4@SiO2(10 nm) NPs (b), for NaYF4@SiO2(10 nm)@Ag nanostructures (c).
Fig. 16
Fig. 16 Dependences of UC emission intensity on pumping power under 980 nm excitation for NaYF4:Nd/Yb/Ho nanocrystals (a), for NaYF4@SiO2(10 nm) NPs (b), for NaYF4@SiO2(10 nm)@Ag nanostructures (c).
Fig. 17
Fig. 17 Possible UC mechanisms in NaYF4:Nd/Yb/Ho@SiO2(10 nm) NPs (a) and NaYF4:Nd/Yb/Ho@SiO2(10 nm)@Ag nanostructures (b) under 808 nm laser excitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D=Kλ/βcosθ
I UCL P Laser n

Metrics