Abstract

We fabricated a 3-dimensional core-shell structure of Silica-Gold Nanoparticles and tested it as a substrate for Surface Enhance Raman scattering (SERS). The environment of the colloidal solution was modified through pH variations to optimize the stability of the solution. Transmission Electron Microscopy (TEM) images show the structure of the cluster and the resonances were investigated through UV-Vis spectroscopy. Zeta Potential value was also measured to further verify the stability. The core-shell structure was used as a substrate and its subsequent Raman spectra were analyzed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
    [Crossref] [PubMed]
  2. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
    [Crossref] [PubMed]
  3. D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica–gold core-shell (SiO2 @Au) nanoparticles,” PRAMANA J. Phys. 69(2), 277–283 (2007).
    [Crossref]
  4. M. Vollmer and U. Kreibig, Optical Properties of Metal Clusters (Springer, 1995).
  5. S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
    [Crossref] [PubMed]
  6. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
    [Crossref]
  7. L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 1061–1073 (2008).
    [Crossref] [PubMed]
  8. C. R. Simovski and S. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
    [Crossref]
  9. J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Mater. Chem. Phys. 105(2–3), 419–425 (2007).
    [Crossref]
  10. G. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials (Basel) 3(1), 158–172 (2013).
    [Crossref]
  11. A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
    [Crossref] [PubMed]
  12. A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
    [Crossref]
  13. Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
    [Crossref] [PubMed]
  14. Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
    [Crossref]

2014 (1)

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

2013 (2)

G. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials (Basel) 3(1), 158–172 (2013).
[Crossref]

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

2012 (1)

B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
[Crossref] [PubMed]

2011 (3)

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
[Crossref] [PubMed]

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

2009 (1)

C. R. Simovski and S. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

2008 (2)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref]

L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 1061–1073 (2008).
[Crossref] [PubMed]

2007 (3)

J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Mater. Chem. Phys. 105(2–3), 419–425 (2007).
[Crossref]

D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica–gold core-shell (SiO2 @Au) nanoparticles,” PRAMANA J. Phys. 69(2), 277–283 (2007).
[Crossref]

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Ågren, H.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Aikens, C. M.

L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 1061–1073 (2008).
[Crossref] [PubMed]

Andersson, P. O.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Bürgi, T.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
[Crossref] [PubMed]

Chen, T.

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Cheng, J.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Cheng, Y.

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Choma, J.

B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
[Crossref] [PubMed]

Cunningham, A.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref]

Han, X.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Hernandez-Rivera, S.

G. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials (Basel) 3(1), 158–172 (2013).
[Crossref]

Herrera, G.

G. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials (Basel) 3(1), 158–172 (2013).
[Crossref]

Hu, M.

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Hu, W.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Jamiola, D.

B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
[Crossref] [PubMed]

Jankiewicz, B. J.

B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
[Crossref] [PubMed]

Jaroniec, M.

B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
[Crossref] [PubMed]

Jensen, L.

L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 1061–1073 (2008).
[Crossref] [PubMed]

Jia, H.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Kalele, S.

D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica–gold core-shell (SiO2 @Au) nanoparticles,” PRAMANA J. Phys. 69(2), 277–283 (2007).
[Crossref]

Kandpal, D.

D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica–gold core-shell (SiO2 @Au) nanoparticles,” PRAMANA J. Phys. 69(2), 277–283 (2007).
[Crossref]

Kim, A.

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Kulkarni, S. K.

D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica–gold core-shell (SiO2 @Au) nanoparticles,” PRAMANA J. Phys. 69(2), 277–283 (2007).
[Crossref]

Landström, L.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Lederer, F.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
[Crossref] [PubMed]

Li, Z.

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Lundquist, M.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Luo, Y.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Ma, Z.

J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Mater. Chem. Phys. 105(2–3), 419–425 (2007).
[Crossref]

Mohammed, A.

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Mühlig, S.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
[Crossref] [PubMed]

Ohlberg, D. A.

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Ou, F. S.

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Pacholski, C.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

Padilla, A.

G. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials (Basel) 3(1), 158–172 (2013).
[Crossref]

Qian, H.

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Rockstuhl, C.

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express 19(10), 9607–9616 (2011).
[Crossref] [PubMed]

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

Schatz, G. C.

L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 1061–1073 (2008).
[Crossref] [PubMed]

Scheeler, S.

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref]

Shalkevich, N.

Simovski, C. R.

C. R. Simovski and S. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref]

Tretyakov, S.

C. R. Simovski and S. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref]

Wang, C.

J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Mater. Chem. Phys. 105(2–3), 419–425 (2007).
[Crossref]

Wang, H.

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Williams, R. S.

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Xie, Y.

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Xue, J.

J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Mater. Chem. Phys. 105(2–3), 419–425 (2007).
[Crossref]

Yannopapas, V.

Yao, W.

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Zeng, J.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Zhang, G.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Zhang, H.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Zhao, B.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Zhao, W.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Zhuang, Z.

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

ACS Nano (1)

S. Mühlig, A. Cunningham, S. Scheeler, C. Pacholski, T. Bürgi, C. Rockstuhl, and F. Lederer, “Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range,” ACS Nano 5(8), 6586–6592 (2011).
[Crossref] [PubMed]

Adv. Colloid Interface Sci. (1)

B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Adv. Colloid Interface Sci. 170(1-2), 28–47 (2012).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref]

Chem. Phys. Lett. (1)

A. Mohammed, W. Hu, P. O. Andersson, M. Lundquist, L. Landström, Y. Luo, and H. Ågren, “Cluster approximations of chemically enhanced molecule-surface Raman spectra: The case of trans-1,2-bis (4-pyridyl) ethylene (BPE) on gold,” Chem. Phys. Lett. 581, 70–73 (2013).
[Crossref]

Chem. Soc. Rev. (1)

L. Jensen, C. M. Aikens, and G. C. Schatz, “Electronic structure methods for studying surface-enhanced Raman scattering,” Chem. Soc. Rev. 37(5), 1061–1073 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

A. Kim, F. S. Ou, D. A. Ohlberg, M. Hu, R. S. Williams, and Z. Li, “Study of molecular trapping inside gold nanofinger arrays on surface-enhanced Raman substrates,” J. Am. Chem. Soc. 133(21), 8234–8239 (2011).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Mater. Chem. Phys. 105(2–3), 419–425 (2007).
[Crossref]

Nanomaterials (Basel) (1)

G. Herrera, A. Padilla, and S. Hernandez-Rivera, “Surface Enhanced Raman Scattering (SERS) Studies of Gold and Silver Nanoparticles Prepared by Laser Ablation,” Nanomaterials (Basel) 3(1), 158–172 (2013).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

C. R. Simovski and S. Tretyakov, “Model of isotropic resonant magnetism in the visible range based on core-shell clusters,” Phys. Rev. B 79(4), 045111 (2009).
[Crossref]

PRAMANA J. Phys. (1)

D. Kandpal, S. Kalele, and S. K. Kulkarni, “Synthesis and characterization of silica–gold core-shell (SiO2 @Au) nanoparticles,” PRAMANA J. Phys. 69(2), 277–283 (2007).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. Xie, T. Chen, Y. Cheng, H. Wang, H. Qian, and W. Yao, “SiO2@Au nanoshells-based SERS method for detection of sunset yellow and chrysoidine,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 355–360 (2014).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

Z. Zhuang, J. Cheng, H. Jia, J. Zeng, X. Han, B. Zhao, H. Zhang, G. Zhang, and W. Zhao, “Density functional theory calculation of vibrational spectroscopy of trans-1,2-bis(4-pyridyl)-ethylene,” Vib. Spectrosc. 43(2), 306–312 (2007).
[Crossref]

Other (1)

M. Vollmer and U. Kreibig, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TEM images of SiO2-Au core-shell clusters: (a) Random arrangement of core-shell clusters (b) Single core shell structure.

Fig. 2
Fig. 2

Absorption spectra of the core-shell clusters for immediate samples at different pH:(a) 2.12 (b) 2.85 (c) 5.67 (d) 11.15 and (e) 12.21.

Fig. 3
Fig. 3

Absorption spectra of the core-shell clusters for aged samples at different pH: (a) 2.12 (b) 2.85 (c) 5.67 (d) 11.15 and (e) 12.21.

Fig. 4
Fig. 4

SERS spectra of BPE on the core-shell substrates at different pH values (a) 2.12; (b) 2.85; (c) 5.67; (d) 11.15; and (e) 12.21.

Tables (1)

Tables Icon

Table 1 Zeta Potential for aged samples of core-shell clusters at different pH values

Metrics