Abstract

Er3+-doped transparent tellurite glass ceramics (GCs) containing PbTe3O7 nanocrystals were successfully prepared. The formation of PbTe3O7 nanocrystals was confirmed by X-ray diffraction (XRD) and transmission electron microscope (TEM). It can be deduced that Er3+ ions prefer to concentrate in the PbTe3O7 nanocrystals rather than in glass matrix. Intense 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm LD. Besides, the present tellurite GC possesses large stimulated emission cross section (0.80 × 10−20 cm2) and a low pumping threshold around 2.7 μm indicating that the obtained GC might be an attractive candidate for mid-infrared laser or amplifier.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced emission and spectroscopic properties in oxyfluoride glass ceramics containing LaOF:Er3+ nanocrystals

S. L. Kang, X. Q. Song, X. J. Huang, J. R. Qiu, and G. P. Dong
Opt. Mater. Express 6(7) 2351-2359 (2016)

2.7 μm emission in Er3+ doped glass ceramics containing lutetium oxyfluoride nanocrystals

Y. Liu, X. Y. Liu, W. C. Wang, W. J. Zhang, and Q. Y. Zhang
Opt. Mater. Express 6(9) 2759-2768 (2016)

Synthesis, theoretical analysis, and characterization of highly Er3+ doped fluoroaluminate–tellurite glass with 2.7 μm emission

Ying Tian, Xufeng Jing, Bingpeng Li, Pengcheng Li, Yinyan Li, Ruoshan Lei, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(10) 3274-3285 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
    [Crossref] [PubMed]
  2. S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-µm fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
    [Crossref] [PubMed]
  3. M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
    [Crossref]
  4. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
    [Crossref]
  5. F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
    [PubMed]
  6. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36(15), 2812–2814 (2011).
    [Crossref] [PubMed]
  7. E. Arbabzadah, S. Chard, H. Amrania, C. Phillips, and M. Damzen, “Comparison of a diode pumped Er:YSGG and Er:YAG laser in the bounce geometry at the 3 μm transition,” Opt. Express 19(27), 25860–25865 (2011).
    [Crossref] [PubMed]
  8. H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
    [Crossref]
  9. Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
    [Crossref]
  10. Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
    [Crossref]
  11. G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
    [Crossref]
  12. G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
    [Crossref] [PubMed]
  13. F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
    [Crossref]
  14. G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
    [Crossref] [PubMed]
  15. V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
    [Crossref]
  16. M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
    [Crossref]
  17. C. Duverger, M. Bouazaoui, and S. Turrell, “Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses,” J. Non-Cryst. Solids 220(2-3), 169–177 (1997).
    [Crossref]
  18. K. F. Li, G. Zhang, L. L. Hu, M. Wang, and D. P. Chen, “~2.1 μm Tm3+-Ho3+ co-doped tungsten tellurite single mode fiber laser,” Proc. Of SPIE. 8257, 0A (2012).
  19. R. Jose and Y. Ohishi, “Higher Nonlinear Indices, Raman Gain Coefficients, and Bandwidths in the TeO2–ZnO–Nb2O5–MoO3 Quaternary Glass System,” Appl. Phys. Lett. 90(21), 211104 (2007).
    [Crossref]
  20. I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
    [Crossref]
  21. K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
    [Crossref] [PubMed]
  22. J. S. Wang, E. M. Vogel, and E. Snitzer, “Determination of thermal diffusion constant [J],” Opt. Mater. 3, 187 (1994).
    [Crossref]
  23. H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
    [Crossref]
  24. V. Ravi Kumar and N. Veeraiah, “Infrared spectral investigations on ZnF2-PbO-TeO2 glasses,” J. Mater. Sci. Lett. 16(22), 1816–1818 (1997).
    [Crossref]
  25. F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
    [Crossref]
  26. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [Crossref] [PubMed]
  27. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  28. B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
    [Crossref]
  29. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
    [Crossref] [PubMed]
  30. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
    [Crossref]
  31. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
    [Crossref]

2015 (1)

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

2014 (4)

F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
[PubMed]

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

2013 (3)

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

2012 (1)

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

2011 (3)

2010 (2)

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
[Crossref]

2009 (1)

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

2008 (1)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

2007 (1)

R. Jose and Y. Ohishi, “Higher Nonlinear Indices, Raman Gain Coefficients, and Bandwidths in the TeO2–ZnO–Nb2O5–MoO3 Quaternary Glass System,” Appl. Phys. Lett. 90(21), 211104 (2007).
[Crossref]

2006 (1)

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

2004 (1)

2001 (1)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[Crossref]

1999 (1)

1997 (2)

V. Ravi Kumar and N. Veeraiah, “Infrared spectral investigations on ZnF2-PbO-TeO2 glasses,” J. Mater. Sci. Lett. 16(22), 1816–1818 (1997).
[Crossref]

C. Duverger, M. Bouazaoui, and S. Turrell, “Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses,” J. Non-Cryst. Solids 220(2-3), 169–177 (1997).
[Crossref]

1996 (2)

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-microm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[Crossref] [PubMed]

1995 (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Determination of thermal diffusion constant [J],” Opt. Mater. 3, 187 (1994).
[Crossref]

1993 (1)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[Crossref]

1992 (1)

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Amrania, H.

Arbabzadah, E.

Barthou, C.

I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
[Crossref]

Bi, Z.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Bouazaoui, M.

C. Duverger, M. Bouazaoui, and S. Turrell, “Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses,” J. Non-Cryst. Solids 220(2-3), 169–177 (1997).
[Crossref]

Chai, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

Chai, G. Q.

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Chard, S.

Chateau, C.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[Crossref]

Chen, B.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Chen, B. J.

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Chen, D.

F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
[PubMed]

H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36(10), 1815–1817 (2011).
[Crossref] [PubMed]

Chen, D. P.

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Chen, J.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Cheng, L. H.

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Damzen, M.

Dong, G.

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

Dong, G. P.

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Duverger, C.

C. Duverger, M. Bouazaoui, and S. Turrell, “Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses,” J. Non-Cryst. Solids 220(2-3), 169–177 (1997).
[Crossref]

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

Elhouichet, H.

I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
[Crossref]

Fan, S.

Ferid, M.

I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
[Crossref]

Frenz, M.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

Furniss, D.

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

Genotelle, M.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[Crossref]

Goldner, P.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[Crossref]

Guo, Y.

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

Hashida, M.

He, J.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Hewak, D. W.

Hu, L.

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
[PubMed]

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

K. Li, G. Zhang, and L. Hu, “Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35(24), 4136–4138 (2010).
[Crossref] [PubMed]

Hu, L. L.

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Huang, A.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Huang, F.

F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
[PubMed]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

Huang, F. F.

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Huber, G.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Izumitani, T.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[Crossref]

Jackson, S. D.

Jansen, E. D.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

Jlassi, I.

I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
[Crossref]

Jose, R.

R. Jose and Y. Ohishi, “Higher Nonlinear Indices, Raman Gain Coefficients, and Bandwidths in the TeO2–ZnO–Nb2O5–MoO3 Quaternary Glass System,” Appl. Phys. Lett. 90(21), 211104 (2007).
[Crossref]

Kamiya, K.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

Kanbara, H.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

King, T. A.

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Konz, F.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

Kubodera, K.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

Li, K.

Li, L.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Li, X.

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Lin, A.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Lin, H.

Liu, X.

F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
[PubMed]

Liu, X. Q.

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Ma, Y.

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

Ma, Z.

McCumber, D. E.

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Mendez-Ramos, J.

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

Mortier, M.

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[Crossref]

Murakami, M.

Nasu, H.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

Nyga, P.

Ohishi, Y.

R. Jose and Y. Ohishi, “Higher Nonlinear Indices, Raman Gain Coefficients, and Bandwidths in the TeO2–ZnO–Nb2O5–MoO3 Quaternary Glass System,” Appl. Phys. Lett. 90(21), 211104 (2007).
[Crossref]

Payne, D. N.

Peng, M.

Phillips, C.

Pollnau, M.

Pratisto, H.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

Qiu, J.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

G. Wu, S. Fan, Y. Zhang, G. Chai, Z. Ma, M. Peng, J. Qiu, and G. Dong, “2.7 μm emission in Er3+:CaF2 nanocrystals embedded oxyfluoride glass ceramics,” Opt. Lett. 38(16), 3071–3074 (2013).
[Crossref] [PubMed]

Qiu, J. R.

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Ravi Kumar, V.

V. Ravi Kumar and N. Veeraiah, “Infrared spectral investigations on ZnF2-PbO-TeO2 glasses,” J. Mater. Sci. Lett. 16(22), 1816–1818 (1997).
[Crossref]

Rodriguez, V. D.

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

Sakabe, S.

Samson, B. N.

Schweizer, T.

Seddon, A. B.

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

Shi, T.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Shimizu, S.

Skorczakowski, M.

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Determination of thermal diffusion constant [J],” Opt. Mater. 3, 187 (1994).
[Crossref]

Sun, J. S.

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Swiderski, J.

Tian, Y.

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Tikhomirov, V. K.

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

Tokita, S.

Turrell, S.

C. Duverger, M. Bouazaoui, and S. Turrell, “Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses,” J. Non-Cryst. Solids 220(2-3), 169–177 (1997).
[Crossref]

Uchigaki, T.

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

Veeraiah, N.

V. Ravi Kumar and N. Veeraiah, “Infrared spectral investigations on ZnF2-PbO-TeO2 glasses,” J. Mater. Sci. Lett. 16(22), 1816–1818 (1997).
[Crossref]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Determination of thermal diffusion constant [J],” Opt. Mater. 3, 187 (1994).
[Crossref]

Wang, B.

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Determination of thermal diffusion constant [J],” Opt. Mater. 3, 187 (1994).
[Crossref]

Wang, Y.

Weber, H. P.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

Welch, A. J.

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

Wu, G.

Xiao, Z.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Xusheng, X. J. S.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Yang, A.

Yang, Z.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

Yang, Z. M.

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Yu, Y.

Zajac, A.

Zhan, H.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Zhang, A.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Zhang, F.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Zhang, G.

Zhang, J.

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

Zhang, J. J.

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Zhang, L.

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

Zhang, Q.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

Zhang, Q. Y.

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Zhang, X. Q.

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Zhang, Y.

Zhong, H. Y.

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

Zhou, Z.

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

Zhu, Y.

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

Zou, X.

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[Crossref]

Appl. Phys. B (2)

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B 93(2-3), 269–316 (2008).
[Crossref]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Appl. Phys. Lett. (1)

R. Jose and Y. Ohishi, “Higher Nonlinear Indices, Raman Gain Coefficients, and Bandwidths in the TeO2–ZnO–Nb2O5–MoO3 Quaternary Glass System,” Appl. Phys. Lett. 90(21), 211104 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Frenz, H. Pratisto, F. Konz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 μm and 2.79 μm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996).
[Crossref]

J. Alloys Compd. (3)

M. Mortier, P. Goldner, C. Chateau, and M. Genotelle, “Erbium doped glass-ceramics: concentration effect on crystal structure and energy transfer between active ions,” J. Alloys Compd. 323–324, 245–249 (2001).
[Crossref]

H. Zhan, A. Zhang, J. He, Z. Zhou, L. Li, T. Shi, X. J. S. Xusheng, and A. Lin, “Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses,” J. Alloys Compd. 582, 742–746 (2014).
[Crossref]

F. Zhang, Z. Bi, J. Chen, A. Huang, Y. Zhu, B. Chen, and Z. Xiao, “Spectroscopic investigation of Er3+ in fluorotellurite glasses for 2.7 μm luminescence,” J. Alloys Compd. 649, 1191–1196 (2015).
[Crossref]

J. Lumin. (2)

I. Jlassi, H. Elhouichet, M. Ferid, and C. Barthou, “Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5,” J. Lumin. 130(12), 2394–2401 (2010).
[Crossref]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147(2), 372–377 (2014).
[Crossref]

J. Mater. Sci. Lett. (1)

V. Ravi Kumar and N. Veeraiah, “Infrared spectral investigations on ZnF2-PbO-TeO2 glasses,” J. Mater. Sci. Lett. 16(22), 1816–1818 (1997).
[Crossref]

J. Non-Cryst. Solids (3)

X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162(1-2), 68–80 (1993).
[Crossref]

Y. Guo, Y. Tian, L. Zhang, L. Hu, and J. Zhang, “Erbium doped heavy metal oxide glasses for mid-infrared laser materials,” J. Non-Cryst. Solids 377(10), 119–123 (2013).
[Crossref]

C. Duverger, M. Bouazaoui, and S. Turrell, “Raman spectroscopic investigations of the effect of the doping metal on the structure of binary tellurium-oxide glasses,” J. Non-Cryst. Solids 220(2-3), 169–177 (1997).
[Crossref]

J. Phys. Chem. C (1)

G. Q. Chai, G. P. Dong, J. R. Qiu, Q. Y. Zhang, and Z. M. Yang, “2.7 μm Emission from Transparent Er3+, Tm3+ Codoped Yttrium Aluminum Garnet (Y3Al5O12) Nanocrystals–Tellurate Glass Composites by Novel Comelting Technology,” J. Phys. Chem. C 116(37), 19941–19950 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Nasu, T. Uchigaki, K. Kamiya, H. Kanbara, and K. Kubodera, “Nonresonant-Type Third-order Nonlinearity of (PbO, Nb2O5)-TiO2-TeO2 Glass Measured by Third-Harmonic Generation,” Jpn. J. Appl. Phys. 31(1), 3899–3900 (1992).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Opt. Mater. (4)

B. Wang, L. H. Cheng, H. Y. Zhong, J. S. Sun, Y. Tian, X. Q. Zhang, and B. J. Chen, “Excited state absorption cross sections of 4 I 13/2 of Er 3+ in ZBLAN,” Opt. Mater. 31(11), 1658–1662 (2009).
[Crossref]

J. S. Wang, E. M. Vogel, and E. Snitzer, “Determination of thermal diffusion constant [J],” Opt. Mater. 3, 187 (1994).
[Crossref]

V. K. Tikhomirov, J. Mendez-Ramos, V. D. Rodriguez, D. Furniss, and A. B. Seddon, “Laser and gain parameters at 2.7 μm of Er3+-doped oxyfluoride transparent glass-ceramics,” Opt. Mater. 28(10), 1143–1146 (2006).
[Crossref]

F. F. Huang, X. Li, X. Q. Liu, J. J. Zhang, L. L. Hu, and D. P. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Sci. Rep. (2)

F. Huang, X. Liu, L. Hu, and D. Chen, “Spectroscopic properties and energy transfer parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glasses,” Sci. Rep. 4, 5053 (2014).
[PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase Transformation and Intense 2.7 μm Emission from Er3+ doped YF3/YOF Submicron-Crystals,” Sci. Rep. 3, 1598 (2013).
[Crossref] [PubMed]

Other (1)

K. F. Li, G. Zhang, L. L. Hu, M. Wang, and D. P. Chen, “~2.1 μm Tm3+-Ho3+ co-doped tungsten tellurite single mode fiber laser,” Proc. Of SPIE. 8257, 0A (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a)-(c) XRD patterns of 1%, 3%, 5% Er3+-doped as-prepared glasses and resulting GCs obtained by heat treatment at 340°C-380°C for 8 h. (d) XRD patterns of 1%, 3%, 5% Er3+-doped GCs heat-treated at 370°C for 8 h. The main crystalline phase is PbTe3O7, and the stark ‘*’ represents the TeO2 phase.
Fig. 2
Fig. 2 (a) TEM micrograph, (b) the corresponding SAED pattern, and (c) HRTEM image, (d) EDS spectra of 5% Er3+-doped GC sample heat-treated at 360°C for 8 h. (e)-(h) the two-dimensional mapping distribution images of Te, O, Pb, Er elements, respectively. The circle 1 and circle 2 in figure (a) indicate the nanocrystals-rich region and glass matrix, separately.
Fig. 3
Fig. 3 . (a) Absorption spectra of 3% Er3+-doped as-prepared glass and GC heat-treated at 370°C for 8 h. (b)-(d) Absorption spectra of Er3+-doped GCs heat-treated at 360°C, 370°C, and 380°C for 8 h with the Er3+ concentration of 1%, 3%, and 5%. The inset in figure (a) shows the transmittance spectra of 3% Er3+-doped as-prepared glass.
Fig. 4
Fig. 4 2.7 μm mid-infrared emission spectra of (a) 1% Er3+, (b) 3% Er3+, and (c) 5% Er3+-doped as-prepared glass and GCs heat-treated at different temperature for 8 h pumped by a 980 nm LD.
Fig. 5
Fig. 5 (a) and (b) Fluorescence decay curves of Er3+: 4I11/2 and Er3+: 4I13/2 level pumped by 808 and 980 nm pulsed LD, respectively, in 3% Er3+-doped as-prepared glass and GCs heat-treated at 340°C-380°C for 8 h; (c) and (d) Er3+-doped concentrations and heat treatment temperature v.s. the lifetime of Er3+: 4I11/2 and Er3+: 4I13/2 level, respectively.
Fig. 6
Fig. 6 (a) Absorption and stimulated emission cross sections, and (b) gain cross sections at 2.7 μm in 3% Er3+-doped GC heat-treated at 380°C for 8 h.

Tables (1)

Tables Icon

Table 1 J–O intensity parameters of Er3+ in 3% Er3+-doped samples

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D = K λ β cos θ
σ em ( λ ) = λ 5 A r a d I ( λ ) 8 π c n 2 λ I ( λ ) d λ
σ em ( λ ) = σ a b s ( λ ) ( Z l / Z u ) exp [ ( ε h v ) / K T ]
G ( λ , P ) = P σ e m ( λ ) ( 1 P ) σ a b s ( λ )

Metrics