Abstract

Hybrid fibers containing metallic micro- and nanowires are an emerging class of optical devices thanks to their electro-optic functionality and applicability in plasmonics. However, pure metals suffer from poor mechanical and chemical properties, which is why alloys displaying synergistic properties of their metallic constituents are becoming popular. Here, we use pressure assisted melt filling to produce micron sized gold-nickel alloy wires with aspect ratios of 105 and diameters of 1.3 μm in silica optical fibers. We show that the alloy remains stable within the highly confined wire state despite exhibiting a miscibility gap in the bulk state at room temperature. Measurements show that the loss of the alloy in the confined state is comparable to that predicted by the bulk alloy permittivity. The presented fabrication and characterization procedure represent a first step towards integration of high aspect ratio micron sized gold-nickel alloy wires in optical fibers and may be extended to a wide range of other alloys.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silver metaphosphate glass wires inside silica fibers—a new approach for hybrid optical fibers

Chhavi Jain, Bruno. P. Rodrigues, Torsten Wieduwilt, Jens Kobelke, Lothar Wondraczek, and Markus. A. Schmidt
Opt. Express 24(4) 3258-3267 (2016)

Optical properties of photonic crystal fiber with integral micron-sized Ge wire

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. St.J. Russell
Opt. Express 16(22) 17227-17236 (2008)

Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell
Opt. Express 19(13) 12180-12189 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
    [Crossref]
  2. J. V. Badding, V. Gopalan, and P. J. A. Sazio, “Building semiconductor structures in optical fiber,” Photon. Spectra 40(8), 80 (2006).
  3. R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
    [Crossref]
  4. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
    [Crossref] [PubMed]
  5. H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
    [Crossref] [PubMed]
  6. S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
    [Crossref] [PubMed]
  7. P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
    [Crossref]
  8. M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
    [Crossref] [PubMed]
  9. R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
    [Crossref] [PubMed]
  10. M. D. Arnold and M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
    [Crossref] [PubMed]
  11. G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
    [Crossref]
  12. W. M. Moore and P. J. Codella, “Oxidation of silver films by atomic oxygen,” J. Phys. Chem. A 92(15), 4421–4426 (1988).
    [Crossref]
  13. C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
    [Crossref] [PubMed]
  14. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  15. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [Crossref] [PubMed]
  16. R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 845–910 (2008).
    [Crossref] [PubMed]
  17. J. Jellinek, “Nanoalloys: tuning properties and characteristics through size and composition,” Faraday Discuss. 138, 11–35, discussion 119–135, 433–434 (2008).
    [Crossref] [PubMed]
  18. M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
    [Crossref] [PubMed]
  19. V. J. Keast, R. L. Barnett, and M. B. Cortie, “First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds,” J. Phys. Condens. Matter 26(30), 305501 (2014).
    [Crossref] [PubMed]
  20. V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
    [Crossref]
  21. A. Zhukov, J. Gonzalez, M. Vazquez, V. Larin, and A. Torcunov, “Nanocrystalline and amorphous magnetic microwires,” Encyclopedia of Nanoscience and Nanotechnology 6, 365–387 (2004).
  22. J. Colbus and K. F. Zimmermann, “Properties of gold-nickel alloy brazed joints in high temperature materials,” Gold Bull. 7(2), 42–49 (1974).
    [Crossref]
  23. C. M. Hurd, S. P. McAlister, and I. Shiozaki, “Weak ferromagnetism and the electrical properties of AuNi alloys,” J. Phys. F 11(2), 457–469 (1981).
    [Crossref]
  24. M. Vázquez, “Soft magnetic wires,” Physica B 299(3), 302–313 (2001).
    [Crossref]
  25. X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
    [Crossref]
  26. I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31(5), 1139–1149 (1996).
    [Crossref]
  27. M. Bassett and D. Beaglehole, “Optical studies of dilute AuNi alloys,” J. Phys. F 6(6), 1211–1221 (1976).
    [Crossref]
  28. D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
    [Crossref]
  29. J. C. Zhao and M. R. Notis, “Ordering transformation and spinodal decomposition in Au-Ni alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 30(3), 707–716 (1999).
    [Crossref]
  30. M. Hirai, “Estimation of viscosities of liquid alloys,” ISIJ Int. 33(2), 251–258 (1993).
    [Crossref]
  31. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
    [Crossref]
  32. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  33. C. Y. Jeong and S. Kim, “Dielectric slot embedded metal cavity waveguides,” Opt. Commun. 324, 134–140 (2014).
    [Crossref]
  34. A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
    [Crossref] [PubMed]
  35. P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” ‎,” New J. Phys. 13(6), 063016 (2011).
    [Crossref]

2016 (2)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (4)

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

C. Y. Jeong and S. Kim, “Dielectric slot embedded metal cavity waveguides,” Opt. Commun. 324, 134–140 (2014).
[Crossref]

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

V. J. Keast, R. L. Barnett, and M. B. Cortie, “First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds,” J. Phys. Condens. Matter 26(30), 305501 (2014).
[Crossref] [PubMed]

2013 (2)

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

2012 (1)

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

2011 (2)

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” ‎,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

2010 (1)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (6)

M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[Crossref]

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 845–910 (2008).
[Crossref] [PubMed]

J. Jellinek, “Nanoalloys: tuning properties and characteristics through size and composition,” Faraday Discuss. 138, 11–35, discussion 119–135, 433–434 (2008).
[Crossref] [PubMed]

2007 (1)

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

2006 (1)

J. V. Badding, V. Gopalan, and P. J. A. Sazio, “Building semiconductor structures in optical fiber,” Photon. Spectra 40(8), 80 (2006).

2001 (2)

M. Vázquez, “Soft magnetic wires,” Physica B 299(3), 302–313 (2001).
[Crossref]

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

1999 (1)

J. C. Zhao and M. R. Notis, “Ordering transformation and spinodal decomposition in Au-Ni alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 30(3), 707–716 (1999).
[Crossref]

1998 (1)

1996 (1)

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31(5), 1139–1149 (1996).
[Crossref]

1993 (1)

M. Hirai, “Estimation of viscosities of liquid alloys,” ISIJ Int. 33(2), 251–258 (1993).
[Crossref]

1988 (1)

W. M. Moore and P. J. Codella, “Oxidation of silver films by atomic oxygen,” J. Phys. Chem. A 92(15), 4421–4426 (1988).
[Crossref]

1984 (1)

1981 (1)

C. M. Hurd, S. P. McAlister, and I. Shiozaki, “Weak ferromagnetism and the electrical properties of AuNi alloys,” J. Phys. F 11(2), 457–469 (1981).
[Crossref]

1976 (1)

M. Bassett and D. Beaglehole, “Optical studies of dilute AuNi alloys,” J. Phys. F 6(6), 1211–1221 (1976).
[Crossref]

1974 (1)

J. Colbus and K. F. Zimmermann, “Properties of gold-nickel alloy brazed joints in high temperature materials,” Gold Bull. 7(2), 42–49 (1974).
[Crossref]

1921 (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Argyros, A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Arnold, M. D.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

M. D. Arnold and M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
[Crossref] [PubMed]

Badding, J. V.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

J. V. Badding, V. Gopalan, and P. J. A. Sazio, “Building semiconductor structures in optical fiber,” Photon. Spectra 40(8), 80 (2006).

Barnett, R. L.

V. J. Keast, R. L. Barnett, and M. B. Cortie, “First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds,” J. Phys. Condens. Matter 26(30), 305501 (2014).
[Crossref] [PubMed]

Bartelt, H.

Bassett, M.

M. Bassett and D. Beaglehole, “Optical studies of dilute AuNi alloys,” J. Phys. F 6(6), 1211–1221 (1976).
[Crossref]

Bauerschmidt, S. T.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Beaglehole, D.

M. Bassett and D. Beaglehole, “Optical studies of dilute AuNi alloys,” J. Phys. F 6(6), 1211–1221 (1976).
[Crossref]

Blaber, M. G.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

M. D. Arnold and M. G. Blaber, “Optical performance and metallic absorption in nanoplasmonic systems,” Opt. Express 17(5), 3835–3847 (2009).
[Crossref] [PubMed]

Boltasseva, A.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Brook-Levinson, E.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Caillaud, C.

Calvo-Dahlborg, M.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Chan, G. H.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

Codella, P. J.

W. M. Moore and P. J. Codella, “Oxidation of silver films by atomic oxygen,” J. Phys. Chem. A 92(15), 4421–4426 (1988).
[Crossref]

Colbus, J.

J. Colbus and K. F. Zimmermann, “Properties of gold-nickel alloy brazed joints in high temperature materials,” Gold Bull. 7(2), 42–49 (1974).
[Crossref]

Cortie, D. L.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Cortie, M. B.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

V. J. Keast, R. L. Barnett, and M. B. Cortie, “First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds,” J. Phys. Condens. Matter 26(30), 305501 (2014).
[Crossref] [PubMed]

Dahlborg, U.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Djurišic, A. B.

Donald, I. W.

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31(5), 1139–1149 (1996).
[Crossref]

Dowd, A.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Elazar, J. M.

Ferrando, R.

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 845–910 (2008).
[Crossref] [PubMed]

Fleming, J. W.

Ford, M. J.

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

Gentle, A.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Gopalan, V.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

J. V. Badding, V. Gopalan, and P. J. A. Sazio, “Building semiconductor structures in optical fiber,” Photon. Spectra 40(8), 80 (2006).

He, R. R.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Healy, N.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Hicks, E. M.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

Hirai, M.

M. Hirai, “Estimation of viscosities of liquid alloys,” ISIJ Int. 33(2), 251–258 (1993).
[Crossref]

Hurd, C. M.

C. M. Hurd, S. P. McAlister, and I. Shiozaki, “Weak ferromagnetism and the electrical properties of AuNi alloys,” J. Phys. F 11(2), 457–469 (1981).
[Crossref]

Jain, C.

Jellinek, J.

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 845–910 (2008).
[Crossref] [PubMed]

J. Jellinek, “Nanoalloys: tuning properties and characteristics through size and composition,” Faraday Discuss. 138, 11–35, discussion 119–135, 433–434 (2008).
[Crossref] [PubMed]

Jeong, C. Y.

C. Y. Jeong and S. Kim, “Dielectric slot embedded metal cavity waveguides,” Opt. Commun. 324, 134–140 (2014).
[Crossref]

Johnston, R. L.

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 845–910 (2008).
[Crossref] [PubMed]

Joly, N. Y.

Kasemo, B.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Keast, V. J.

V. J. Keast, R. L. Barnett, and M. B. Cortie, “First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds,” J. Phys. Condens. Matter 26(30), 305501 (2014).
[Crossref] [PubMed]

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Kim, S.

C. Y. Jeong and S. Kim, “Dielectric slot embedded metal cavity waveguides,” Opt. Commun. 324, 134–140 (2014).
[Crossref]

Krishnamurthi, M.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Langhammer, C.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Lee, H. W.

Ma, Z.

X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[Crossref]

Majewski, M. L.

Manov, V.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

McAlister, S. P.

C. M. Hurd, S. P. McAlister, and I. Shiozaki, “Weak ferromagnetism and the electrical properties of AuNi alloys,” J. Phys. F 11(2), 457–469 (1981).
[Crossref]

McPherson, D. J.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Metcalfe, B. L.

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31(5), 1139–1149 (1996).
[Crossref]

Molokanov, V.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Moore, W. M.

W. M. Moore and P. J. Codella, “Oxidation of silver films by atomic oxygen,” J. Phys. Chem. A 92(15), 4421–4426 (1988).
[Crossref]

Naik, G. V.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Notis, M. R.

J. C. Zhao and M. R. Notis, “Ordering transformation and spinodal decomposition in Au-Ni alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 30(3), 707–716 (1999).
[Crossref]

Peacock, A. C.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Popel, P.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Prill Sempere, L.

Rakic, A. D.

Russell, P. S. J.

Russell, R. F.

Sazio, P. J. A.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

J. V. Badding, V. Gopalan, and P. J. A. Sazio, “Building semiconductor structures in optical fiber,” Photon. Spectra 40(8), 80 (2006).

Scharrer, M.

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” ‎,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

Schatz, G. C.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

Schmidt, M. A.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

A. Tuniz, C. Jain, S. Weidlich, and M. A. Schmidt, “Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber,” Opt. Lett. 41(3), 448–451 (2016).
[Crossref] [PubMed]

R. Spittel, P. Uebel, H. Bartelt, and M. A. Schmidt, “Curvature-induced geometric momenta: the origin of waveguide dispersion of surface plasmons on metallic wires,” Opt. Express 23(9), 12174–12188 (2015).
[Crossref] [PubMed]

S. Xie, F. Tani, J. C. Travers, P. Uebel, C. Caillaud, J. Troles, M. A. Schmidt, and P. S. J. Russell, “As₂S₃-silica double-nanospike waveguide for mid-infrared supercontinuum generation,” Opt. Lett. 39(17), 5216–5219 (2014).
[Crossref] [PubMed]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” ‎,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. S. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011).
[Crossref] [PubMed]

H. K. Tyagi, M. A. Schmidt, L. Prill Sempere, and P. S. J. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Opt. Express 16(22), 17227–17236 (2008).
[Crossref] [PubMed]

M. A. Schmidt and P. S. J. Russell, “Long-range spiralling surface plasmon modes on metallic nanowires,” Opt. Express 16(18), 13617–13623 (2008).
[Crossref] [PubMed]

Schwind, M.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Shiozaki, I.

C. M. Hurd, S. P. McAlister, and I. Shiozaki, “Weak ferromagnetism and the electrical properties of AuNi alloys,” J. Phys. F 11(2), 457–469 (1981).
[Crossref]

Sidorov, V.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Son, L.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Sorin, F.

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Sparks, J. R.

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

Spittel, R.

Su, M.

X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[Crossref]

Supansomboon, S.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Tani, F.

Tarakanov, Y.

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Travers, J. C.

Troles, J.

Tuniz, A.

Tyagi, H. K.

Uebel, P.

Van Duyne, R. P.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

Vázquez, M.

M. Vázquez, “Soft magnetic wires,” Physica B 299(3), 302–313 (2001).
[Crossref]

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Weidlich, S.

Xie, S.

Yuan, Z. Y.

X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[Crossref]

Zhang, X.

X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[Crossref]

Zhao, J.

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

Zhao, J. C.

J. C. Zhao and M. R. Notis, “Ordering transformation and spinodal decomposition in Au-Ni alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 30(3), 707–716 (1999).
[Crossref]

Zimmermann, K. F.

J. Colbus and K. F. Zimmermann, “Properties of gold-nickel alloy brazed joints in high temperature materials,” Gold Bull. 7(2), 42–49 (1974).
[Crossref]

Zoric, I.

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

Zwan, B.

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Adv. Mater. (2)

X. Zhang, Z. Ma, Z. Y. Yuan, and M. Su, “Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing,” Adv. Mater. 20(7), 1310–1314 (2008).
[Crossref]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. A. Schmidt, A. Argyros, and F. Sorin, “Hybrid optical fibers – an innovative platform for in-fiber photonic devices,” Adv. Opt. Mater. 4(1), 13–36 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. S. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Chem. Rev. (1)

R. Ferrando, J. Jellinek, and R. L. Johnston, “Nanoalloys: from theory to applications of alloy clusters and nanoparticles,” Chem. Rev. 108(3), 845–910 (2008).
[Crossref] [PubMed]

Faraday Discuss. (1)

J. Jellinek, “Nanoalloys: tuning properties and characteristics through size and composition,” Faraday Discuss. 138, 11–35, discussion 119–135, 433–434 (2008).
[Crossref] [PubMed]

Gold Bull. (1)

J. Colbus and K. F. Zimmermann, “Properties of gold-nickel alloy brazed joints in high temperature materials,” Gold Bull. 7(2), 42–49 (1974).
[Crossref]

ISIJ Int. (1)

M. Hirai, “Estimation of viscosities of liquid alloys,” ISIJ Int. 33(2), 251–258 (1993).
[Crossref]

J. Mater. Sci. (1)

I. W. Donald and B. L. Metcalfe, “The preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process,” J. Mater. Sci. 31(5), 1139–1149 (1996).
[Crossref]

J. Phys. Chem. A (1)

W. M. Moore and P. J. Codella, “Oxidation of silver films by atomic oxygen,” J. Phys. Chem. A 92(15), 4421–4426 (1988).
[Crossref]

J. Phys. Condens. Matter (2)

M. G. Blaber, M. D. Arnold, and M. J. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys. Condens. Matter 22(14), 143201 (2010).
[Crossref] [PubMed]

V. J. Keast, R. L. Barnett, and M. B. Cortie, “First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds,” J. Phys. Condens. Matter 26(30), 305501 (2014).
[Crossref] [PubMed]

J. Phys. F (2)

M. Bassett and D. Beaglehole, “Optical studies of dilute AuNi alloys,” J. Phys. F 6(6), 1211–1221 (1976).
[Crossref]

C. M. Hurd, S. P. McAlister, and I. Shiozaki, “Weak ferromagnetism and the electrical properties of AuNi alloys,” J. Phys. F 11(2), 457–469 (1981).
[Crossref]

Mater. Sci. Eng. A (1)

V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg, V. Sidorov, L. Son, and Y. Tarakanov, “Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulks and glass coated microwires,” Mater. Sci. Eng. A 304, 54–60 (2001).
[Crossref]

Metall. Mater. Trans., A Phys. Metall. Mater. Sci. (1)

J. C. Zhao and M. R. Notis, “Ordering transformation and spinodal decomposition in Au-Ni alloys,” Metall. Mater. Trans., A Phys. Metall. Mater. Sci. 30(3), 707–716 (1999).
[Crossref]

Nano Lett. (2)

C. Langhammer, M. Schwind, B. Kasemo, and I. Zorić, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8(5), 1461–1471 (2008).
[Crossref] [PubMed]

G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography,” Nano Lett. 7(7), 1947–1952 (2007).
[Crossref]

Nat. Photonics (1)

R. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6(3), 174–179 (2012).
[Crossref]

New J. Phys. (1)

P. Uebel, M. A. Schmidt, M. Scharrer, and P. S. J. Russell, “An azimuthally polarizing photonic crystal fibre with a central gold nanowire,” ‎,” New J. Phys. 13(6), 063016 (2011).
[Crossref]

Opt. Commun. (1)

C. Y. Jeong and S. Kim, “Dielectric slot embedded metal cavity waveguides,” Opt. Commun. 324, 134–140 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Photon. Spectra (1)

J. V. Badding, V. Gopalan, and P. J. A. Sazio, “Building semiconductor structures in optical fiber,” Photon. Spectra 40(8), 80 (2006).

Phys. Rev. (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[Crossref]

Physica B (1)

M. Vázquez, “Soft magnetic wires,” Physica B 299(3), 302–313 (2001).
[Crossref]

Thin Solid Films (1)

D. J. McPherson, S. Supansomboon, B. Zwan, V. J. Keast, D. L. Cortie, A. Gentle, A. Dowd, and M. B. Cortie, “Strategies to control the spectral properties of Au–Ni thin films,” Thin Solid Films 551, 200–204 (2014).
[Crossref]

Other (1)

A. Zhukov, J. Gonzalez, M. Vazquez, V. Larin, and A. Torcunov, “Nanocrystalline and amorphous magnetic microwires,” Encyclopedia of Nanoscience and Nanotechnology 6, 365–387 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of the end face of an etched empty MGIF sample (rc: core radius, rh: hole radius, : pitch). The sample was etched in 5% HF for 5 minutes to expose the graded core boundary, (b) Schematic of the directional coupling MGIF sample having a GeO2-doped core (magenta) and the gold-nickel alloy (orange) running in parallel. The red arrow indicates the input light beam, (c) microscope image of the side view of an MGIF sample filled with othe gold-nickel alloy using PAMF. To show a distinctive contrast between an alloy filled and an empty hole, a junction between the filled and unfilled part of capillary is shown. (d) Schematic of the PAMF process in which either (i) alloy granulates or (ii) alloy wires are inserted into auxiliary capillaries, which are (iii) heated at alloy melting temperatures (MP) and pressure filled into the optical fibers, and (e) Figure-of-merit calculation showing the minimal hole radius (displayed on reciprocal scale) which can be filled with the gold-nickel alloy using PAMF for 30 minutes and a length of 10 cm. Figure inset shows a close-up SEM image of the MGIF hole filled with the alloy. The wire protrudes out as a result of cleaving.
Fig. 2
Fig. 2 (a) Schematic of the transmission setup used for the optical characterization of the MGIF fiber samples (pol.: polarizer, hwp.: half wave plate, obj: objective, OSA: optical spectrum analyzer). The red lines indicate the path of the light beam. The optical characterization of a 8.1 cm alloy- MGIF was performed by launching light in the GeO2-doped core and using an initial 6 mm alloy unfilled part and (b) transmission of the MGIF sample as a function of different lengths used during the cut-back measurement at 650 nm and for x-pol. state.
Fig. 3
Fig. 3 Comparison of the optical properties of pure gold (Au), nickel (Ni) and gold-nickel (Au-Ni) alloy for wavelength from 0.2 μm to 2 μm in terms of (a) refractive index, (b) extinction coefficient, (c) and (d) real and imaginary parts of the dielectric function, respectively. The dielectric constants for the alloy were measured using ellipsometry on a macroscopic sample, whereas the dielectric properties of gold and nickel were taken from [15]. The equation to fit the ellipsometry data and the corresponding fitting parameters can be found in Appendix A2.
Fig. 4
Fig. 4 Comparison of the modal loss of the alloy micro-wire enhanced MGIF for (a) y- and (b) x- polarization states. In both plots the experimentally measured loss is shown in red where error bars represent the error in fitting the cut-back loss. The green region refers to simulated modal loss assuming that the alloy entirely fills out the empty channel of the MGIF and includes all possible loss values for uncertainties in fiber geometry (hole diameter, pitch and core-clad refractive index difference). The simulations represented by the blue region take into account an 18 nm wide air gap at the alloy-glass interface facing the dielectric core and in addition, the uncertainties in fiber geometry as well. The insets in both the plots show saturated Poynting vector fields for both polarization directions at a wavelength of 700 nm when alloy is assumed to be filled without air gaps.

Tables (1)

Tables Icon

Table 1 Lorentz-Drude Optical Constants of Gold-Nickel Alloy

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η=Aexp(B/RT)
A= 1.7× 10 7 ρ 2/3 T m 1/2 M 1/6 exp(B/R T m )
B=2.65 T m 1.27
ε(ω)= ε + ω p 2 υ 2 i ω τ υ + j=1 3 Ω pj 2 ( Ω oj 2 υ 2 )i Ω τj υ

Metrics