Abstract

Although the emission of lanthanide (Ln) ions doped cubic sesquioxides has been subject of extensive studies, there are fundamental issues still to be elucidated. Specifically, compared to the well-understood emission of Ln at C2 sites, the emission at the inversion S6 (C3i) sites, representing ¼ of the total sites, has been identified only for Pr, Nd, Eu, Sm and Yb. Here, we present a first report and improved identification of the emission, excitation and decay properties of Tb, Dy and Pr at S6 sites in Y2O3 by use of time-gated luminescence spectroscopy. The green emission of Tb at S6 sites is characterized by an intensity ratio relative to the cyan band at 490 nm of 10 compared to 2 measured for Tb at C2 sites. Dy at S6 sites displays a relatively intense, near-infrared emission at 765 nm which is red-shifted by ca. 200 nm relative to yellow peaked emission of Dy at C2 sites. The emission lifetimes of 9.4 and 4.8 ms, associated with Tb and Dy at S6 sites, exceed by a factor of 5 and 10 those of C2 counterparts. It is also found that Dy may be regarded as a sensitive probe for the inversion symmetry, comparable with the more recognized Eu. The participation of Ln at S6 sites to the up-conversion emission is revealed for the first time in Sm doped Y2O3 and Eu /Tb, Yb co-doped Y2O3 and explained in terms of successive ground state and excited state absorptions and cooperative energy transfer, respectively.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
New synthetic strategies for luminescent YVO4:Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) with mesoporous cell-like nanostructure

Liusai Yang, Siyan Peng, Minglei Zhao, and Leshu Yu
Opt. Mater. Express 8(12) 3805-3819 (2018)

Close-relationship between the luminescence and structural characteristics in efficient nano-phosphor Y2Mo4O15:Eu3+

Huajuan Deng, Na Xue, Zhoufei Hei, Mengfan He, Ting Wang, Nannan Xie, and Ruijin Yu
Opt. Mater. Express 5(3) 490-496 (2015)

Upconversion luminescence from aluminoborate glasses doped with Tb3+, Eu3+ and Dy3+ under the excitation of 2.6-μm femtosecond laser pulses

M. H. Yuan, H. H. Fan, Q. F. Dai, S. Lan, X. Wan, and S. L. Tie
Opt. Express 23(17) 21909-21918 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
    [Crossref]
  2. P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
    [Crossref]
  3. T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
    [Crossref]
  4. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
    [Crossref]
  5. A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
    [Crossref]
  6. S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
    [Crossref] [PubMed]
  7. I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
    [Crossref] [PubMed]
  8. R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, 1964 Vol.II).
  9. R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
    [Crossref]
  10. J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
    [Crossref]
  11. E. Zych, “Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3,” J. Phys. Condens. Matter 14(22), 5637–5650 (2002).
    [Crossref]
  12. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
    [Crossref] [PubMed]
  13. S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
    [Crossref] [PubMed]
  14. G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
    [Crossref]
  15. M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
    [Crossref]
  16. P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
    [Crossref]
  17. A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
    [Crossref]
  18. Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
    [Crossref]
  19. D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
    [Crossref]
  20. C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
    [Crossref] [PubMed]
  21. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
    [Crossref]
  22. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
    [Crossref]
  23. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
    [Crossref] [PubMed]
  24. W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
    [Crossref] [PubMed]
  25. C. M. Dodson, J. A. Kurvits, D. Li, M. Jiang, and R. Zia, “Magnetic dipole emission of Dy3+:Y2O3 and Tm3+:Y2O3 at near-infrared wavelengths,” Opt. Mater. Express 4(11), 2441–2450 (2014).
    [Crossref]
  26. F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
    [Crossref] [PubMed]
  27. D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
    [Crossref]
  28. Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
    [Crossref]
  29. D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
    [Crossref] [PubMed]
  30. D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
    [Crossref]
  31. Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors,” J. Solid State Chem. 171(1-2), 391–395 (2003).
    [Crossref]
  32. H. Wang, C. K. Duan, and P. A. Tanner, “Visible upconversion luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
    [Crossref]
  33. A. Pandey, V. K. Rai, and K. Kumar, “Influence of Li+ codoping on visible emission of Y2O3:Tb3+, Yb3+ phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014).
    [Crossref] [PubMed]

2016 (2)

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

2015 (5)

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
[Crossref]

2014 (5)

A. Pandey, V. K. Rai, and K. Kumar, “Influence of Li+ codoping on visible emission of Y2O3:Tb3+, Yb3+ phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014).
[Crossref] [PubMed]

C. M. Dodson, J. A. Kurvits, D. Li, M. Jiang, and R. Zia, “Magnetic dipole emission of Dy3+:Y2O3 and Tm3+:Y2O3 at near-infrared wavelengths,” Opt. Mater. Express 4(11), 2441–2450 (2014).
[Crossref]

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

2013 (2)

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

2012 (4)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
[Crossref]

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

2011 (1)

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

2008 (1)

H. Wang, C. K. Duan, and P. A. Tanner, “Visible upconversion luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

2007 (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

2004 (2)

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[Crossref]

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

2003 (1)

Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors,” J. Solid State Chem. 171(1-2), 391–395 (2003).
[Crossref]

2002 (2)

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

E. Zych, “Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3,” J. Phys. Condens. Matter 14(22), 5637–5650 (2002).
[Crossref]

1999 (1)

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

1998 (1)

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

1994 (1)

G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
[Crossref]

1982 (1)

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[Crossref]

1970 (1)

J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
[Crossref]

Abrams, B.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Alombert-Goget, G.

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

Apostol, N.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Aumüller, G. C.

G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
[Crossref]

Avram, D.

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
[Crossref]

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Belley, M. D.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Boulon, G.

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

Caiut, J. M.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Chang, N. C.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Chen, X.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Chen, Z.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Cojocaru, B.

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

Cueff, S.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Dexpert, H.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Dexpert-Ghys, J.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Dey, R.

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Dodson, C. M.

C. M. Dodson, J. A. Kurvits, D. Li, M. Jiang, and R. Zia, “Magnetic dipole emission of Dy3+:Y2O3 and Tm3+:Y2O3 at near-infrared wavelengths,” Opt. Mater. Express 4(11), 2441–2450 (2014).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Duan, C. K.

H. Wang, C. K. Duan, and P. A. Tanner, “Visible upconversion luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Florea, M.

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
[Crossref]

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

Franzo, G.

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

Frey, R.

G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
[Crossref]

Gheorghe, C.

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
[Crossref]

Goto, T.

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Grabmaier, B. C.

G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
[Crossref]

Gruber, J. B.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Gu, F.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Guyot, Y.

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Guzik, M.

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

Hammer, P.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Heber, J.

J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
[Crossref]

Hellwege, K. H.

J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
[Crossref]

Holloway, P. H.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Hu, P.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Huang, M.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Ito, A.

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Jiang, M.

Jones, S. L.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Jüstel, T.

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

Karaveli, S.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Kirsch, D. G.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Köbler, U.

J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
[Crossref]

Kondoleon, C.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Köstler, W.

G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
[Crossref]

Kumar, K.

A. Pandey, V. K. Rai, and K. Kumar, “Influence of Li+ codoping on visible emission of Y2O3:Tb3+, Yb3+ phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014).
[Crossref] [PubMed]

Kurvits, J. A.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

C. M. Dodson, J. A. Kurvits, D. Li, M. Jiang, and R. Zia, “Magnetic dipole emission of Dy3+:Y2O3 and Tm3+:Y2O3 at near-infrared wavelengths,” Opt. Mater. Express 4(11), 2441–2450 (2014).
[Crossref]

Leavitt, R. P.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Lechevallier, S.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Li, D.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

C. M. Dodson, J. A. Kurvits, D. Li, M. Jiang, and R. Zia, “Magnetic dipole emission of Dy3+:Y2O3 and Tm3+:Y2O3 at near-infrared wavelengths,” Opt. Mater. Express 4(11), 2441–2450 (2014).
[Crossref]

Li, R.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Li, Y.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Lin, J.

Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors,” J. Solid State Chem. 171(1-2), 391–395 (2003).
[Crossref]

Liu, Y.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Lü, M. K.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Lupei, A.

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
[Crossref]

Mauricot, R.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Mazeres, S.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Miritello, M.

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

Morrison, C. A.

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

Murmann, H.

J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
[Crossref]

Nagai, Y.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Nguyen, G.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Nikol, H.

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Nonaka, T.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Okamoto, T.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Pandey, A.

A. Pandey, V. K. Rai, and K. Kumar, “Influence of Li+ codoping on visible emission of Y2O3:Tb3+, Yb3+ phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014).
[Crossref] [PubMed]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Parvulescu, V.

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Pejchal, J.

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Priolo, F.

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

Rai, V. K.

A. Pandey, V. K. Rai, and K. Kumar, “Influence of Li+ codoping on visible emission of Y2O3:Tb3+, Yb3+ phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014).
[Crossref] [PubMed]

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

Ramanathan, S.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Reitano, R.

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

Ribeiro, S. J.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Rodrigues, A.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Ronda, C.

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Rotaru, C.

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

Sanchez-Dominguez, M.

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Sanchez-Dominiguez, M.

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

Scarangella, A.

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

Sebastian, J. S.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Stanton, I. N.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Suda, A.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Sugiura, M.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Swart, H.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Tanaka, T.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Tanner, P. A.

H. Wang, C. K. Duan, and P. A. Tanner, “Visible upconversion luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[Crossref]

Teodorescu, V.

Therien, M. J.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Thomes, W. J.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Tiseanu, C.

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
[Crossref]

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
[Crossref]

Tiseanu, I.

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

D. Avram, B. Cojocaru, M. Florea, V. Teodorescu, I. Tiseanu, and C. Tiseanu, “NIR to Vis-NIR up-conversion and X-ray excited emission of Er doped high Z BiOCl,” Opt. Mater. Express 5(5), 951–962 (2015).
[Crossref]

Trottier, T. A.

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Tu, D.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Urda, A.

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Vela-Gonzalez, A. V.

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Verelst, M.

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

Voicu, F.

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
[Crossref]

Wang, H.

H. Wang, C. K. Duan, and P. A. Tanner, “Visible upconversion luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

Wang, S.

Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors,” J. Solid State Chem. 171(1-2), 391–395 (2003).
[Crossref]

Wang, S. F.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Wong, F. J.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Wong, K. L.

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[Crossref]

Xu, D.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Yamamoto, T.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Yoshida, S.

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

Yoshikawa, A.

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Yoshizumi, T. T.

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Yuan, D. R.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Zhou, G. J.

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Zhou, S.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Zhou, Y.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors,” J. Solid State Chem. 171(1-2), 391–395 (2003).
[Crossref]

Zhu, H.

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Zia, R.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

C. M. Dodson, J. A. Kurvits, D. Li, M. Jiang, and R. Zia, “Magnetic dipole emission of Dy3+:Y2O3 and Tm3+:Y2O3 at near-infrared wavelengths,” Opt. Mater. Express 4(11), 2441–2450 (2014).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Zych, E.

E. Zych, “Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3,” J. Phys. Condens. Matter 14(22), 5637–5650 (2002).
[Crossref]

Acta Crystallogr. (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Angew. Chem. Int. Ed. (1)

T. Jüstel, H. Nikol, and C. Ronda, “New developments in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

W. Zheng, S. Zhou, Z. Chen, P. Hu, Y. Liu, D. Tu, H. Zhu, R. Li, M. Huang, and X. Chen, “Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection,” Angew. Chem. Int. Ed. Engl. 52(26), 6671–6676 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Lupei, C. Tiseanu, C. Gheorghe, and F. Voicu, “Optical spectroscopy of Sm3+ in C2 and C3i sites of Y2O3 ceramics,” Appl. Phys. B 108(4), 909–918 (2012).
[Crossref]

Appl. Phys. Lett. (1)

A. Scarangella, R. Reitano, G. Franzo, F. Priolo, and M. Miritello, “Enhancement of Er optical efficiency through bismuth sensitization in yttrium oxide,” Appl. Phys. Lett. 107(4), 041908 (2015).
[Crossref]

Catal. Today (1)

Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, A. Suda, and M. Sugiura, “X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1),” Catal. Today 74(3-4), 225–234 (2002).
[Crossref]

J. Appl. Phys. (1)

V. K. Rai, A. Pandey, and R. Dey, “Photoluminescence study of Y2O3: Er3+-Eu3+-Yb3+ phosphor for lighting and sensing applications,” J. Appl. Phys. 113(8), 083104 (2013).
[Crossref]

J. Chem. Phys. (1)

R. P. Leavitt, J. B. Gruber, N. C. Chang, and C. A. Morrison, “Optical spectra, energy levels, and crystal‐field analysis of tripositive rare‐earth ions in Y2O3. II. Non‐Kramers ions in C2 sites,” J. Chem. Phys. 76(10), 4775–4788 (1982).
[Crossref]

J. Lumin. (2)

M. Guzik, G. Alombert-Goget, Y. Guyot, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Spectroscopy of C3i and C2 sites of Nd3+-doped Lu2O3sesquioxide either as ceramics or crystal,” J. Lumin. 169, 606–611 (2016).
[Crossref]

Y. Guyot, M. Guzik, G. Alombert-Goget, J. Pejchal, A. Yoshikawa, A. Ito, T. Goto, and G. Boulon, “Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal,” J. Lumin. 170, 513–519 (2016).
[Crossref]

J. Mater. Sci. (1)

D. Avram, C. Rotaru, B. Cojocaru, M. Sanchez-Dominiguez, M. Florea, and C. Tiseanu, “Heavily impregnated ceria nanoparticles with europium oxide: spectroscopic evidences for homogenous solid solutions and intrinsic structure of Eu3+-oxygen environments,” J. Mater. Sci. 49(5), 2117–2126 (2014).
[Crossref]

J. Phys. Chem. B (1)

P. A. Tanner and K. L. Wong, “Synthesis and spectroscopy of lanthanide ion-doped Y2O3,” J. Phys. Chem. B 108(1), 136–142 (2004).
[Crossref]

J. Phys. Chem. C (2)

D. Avram, M. Sanchez-Dominguez, B. Cojocaru, M. Florea, V. Parvulescu, and C. Tiseanu, “Toward a Unified Description of Luminescence–Local Structure Correlation in Ln Doped CeO2 Nanoparticles: Roles of Ln Ionic Radius, Ln Concentration, and Oxygen Vacancies,” J. Phys. Chem. C 119(28), 16303–16313 (2015).
[Crossref]

H. Wang, C. K. Duan, and P. A. Tanner, “Visible upconversion luminescence from Y2O3: Eu3+, Yb3+,” J. Phys. Chem. C 112(42), 16651–16654 (2008).
[Crossref]

J. Phys. Chem. Solids (1)

G. C. Aumüller, W. Köstler, B. C. Grabmaier, and R. Frey, “Luminescence properties of Pr3+ in cubic rare earth oxides,” J. Phys. Chem. Solids 55(8), 767–772 (1994).
[Crossref]

J. Phys. Condens. Matter (1)

E. Zych, “Concentration dependence of energy transfer between Eu3+ ions occupying two symmetry sites in Lu2O3,” J. Phys. Condens. Matter 14(22), 5637–5650 (2002).
[Crossref]

J. Solid State Chem. (1)

Y. Zhou, J. Lin, and S. Wang, “Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors,” J. Solid State Chem. 171(1-2), 391–395 (2003).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. H. Holloway, T. A. Trottier, B. Abrams, C. Kondoleon, S. L. Jones, J. S. Sebastian, W. J. Thomes, and H. Swart, “Advances in field emission displays phosphors,” J. Vac. Sci. Technol. B 17(2), 758–764 (1999).
[Crossref]

Langmuir (2)

S. Lechevallier, P. Hammer, J. M. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. Ribeiro, and J. Dexpert-Ghys, “APTES-modified RE2O3:Eu3+ luminescent beads: structure and properties,” Langmuir 28(8), 3962–3971 (2012).
[Crossref] [PubMed]

F. Gu, S. F. Wang, M. K. Lü, G. J. Zhou, D. Xu, and D. R. Yuan, “Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method,” Langmuir 20(9), 3528–3531 (2004).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser Photonics Rev. 1(2), 93–177 (2007).
[Crossref]

Nanoscale (1)

I. N. Stanton, M. D. Belley, G. Nguyen, A. Rodrigues, Y. Li, D. G. Kirsch, T. T. Yoshizumi, and M. J. Therien, “Europium- and lithium-doped yttrium oxide nanocrystals that provide a linear emissive response with X-ray radiation exposure,” Nanoscale 6(10), 5284–5288 (2014).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits, S. Ramanathan, and R. Zia, “Dynamic control of light emission faster than the lifetime limit using VO2 phase-change,” Nat. Commun. 6, 8636 (2015).
[Crossref] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Phys. Chem. Chem. Phys. (2)

D. Avram, B. Cojocaru, A. Urda, I. Tiseanu, M. Florea, and C. Tiseanu, “Pure and almost pure NIR emission of Tm and Tm,Yb-CeO2 under UV, X-ray and NIR up-conversion excitation: key roles of level selective antenna sensitization and charge-compensation,” Phys. Chem. Chem. Phys. 17(46), 30988–30992 (2015).
[Crossref] [PubMed]

C. Tiseanu, V. Parvulescu, D. Avram, B. Cojocaru, N. Apostol, A. V. Vela-Gonzalez, and M. Sanchez-Dominguez, “Structural, down- and phase selective up-conversion emission properties of mixed valent Pr doped into oxides with tetravalent cations,” Phys. Chem. Chem. Phys. 16(12), 5793–5802 (2014).
[Crossref] [PubMed]

Phys. Rev. B (1)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Phys. Rev. Lett. (1)

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

A. Pandey, V. K. Rai, and K. Kumar, “Influence of Li+ codoping on visible emission of Y2O3:Tb3+, Yb3+ phosphor,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 118, 619–623 (2014).
[Crossref] [PubMed]

Z. Phys. (1)

J. Heber, K. H. Hellwege, U. Köbler, and H. Murmann, “Energy levels and interaction between Eu3+-ions at lattice sites of symmetryC2 and symmetry C3i in Y2O3,” Z. Phys. 237(3), 189–204 (1970).
[Crossref]

Other (1)

R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, 1964 Vol.II).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic representation of C2 and S6 sites in cubic Y2O3.
Fig. 2
Fig. 2 XRD patterns of Pr, Tb and Dy - Y2O3 and Tb, Yb - Y2O3.
Fig. 3
Fig. 3 Excitation and emission spectra (a) and emission decays (b) corresponding to C2 (black) and S6 (green) Pr doped Y2O3 measured at 80 K. Emission and excitation wavelengths and the delays after the laser pulse, δt, are indicated on the Figure. Also included is a diagram with the MD transitions highlighted. Black and green dotted vertical lines in Fig. 3(a) localize the emission and excitation wavelengths used in experiments.
Fig. 4
Fig. 4 Excitation and emission spectra (a) and emission decays (b) corresponding to C2 (black) and S6 (green) Tb doped Y2O3 measured at 80 K. Emission and excitation wavelengths and the delays after the laser pulse, δt, are indicated on the Figure. Also included is a diagram with the MD transitions highlighted. Black and green dotted vertical lines in Fig. 4(a) localize the emission and excitation wavelengths used in experiments.
Fig. 5
Fig. 5 Excitation and emission spectra (a) and emission decays (b) corresponding to C2 (black) and S6 (green) Dy doped Y2O3 measured at 80 K. Emission and excitation wavelengths and the delays after the laser pulse, δt, are indicated on the Figure. Also included is a diagram with the MD transitions highlighted. Superimposed on the emission spectrum of S6 Dy in Fig. 5(a) is the fingerprint emission spectrum (blue lines) of Dy at Oh site of CeO2 (see also text). Black and green dotted vertical lines in Fig. 5(a) localize the emission and excitation wavelengths used in experiments.
Fig. 6
Fig. 6 Up-conversion emission of C2/S6 Sm doped Y2O3. A diagram that illustrates the main energy levels involved in up-conversion process is also included. For comparison purpose, with red and green lines are drawn the emission spectra related to C2 and S6 centres of Sm separated under down-conversion / direct excitation.
Fig. 7
Fig. 7 Up-conversion emission of C2/S6 Eu, Yb (a) and Tb, Yb co-doped Y2O3(b). A diagram that illustrates the main energy levels involved in up-conversion process is also included. For comparison purpose, with red and green lines are drawn the emission spectra related to C2 and S6 centres of Eu and Tb separated under down-conversion / direct excitation.

Metrics