Abstract

Scalar and vector gratings were recorded and studied on amorphous chalcogenide Ge25As30S45 thin films motivated by the promise of their high stability and photosensitivity. Films were prepared by e-beam evaporation technique. The holographic gratings were recorded by using light of 514.5 nm wavelength (near the material band gap). Those gratings have shown significantly better thermal resistance compared to those recorded on As2S3 thin films fabricated by the same method. Very preliminary analyses of possible photo sensitivity mechanisms involved is presented.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of photoinduced birefringence vs As content in thin GeAsS films

K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallée, E. Knystautas, and T. Galstian
Opt. Mater. Express 3(6) 671-683 (2013)

Observation of giant local photoinduced birefringence in Ge25As30S45 thin films

K. Palanjyan, R. Vallée, and T. Galstian
Opt. Mater. Express 5(5) 1122-1128 (2015)

As4S4 role on the photoinduced birefringence of silver-doped chalcogenide thin films

Sandra Helena Messaddeq, Olivier Boily, Silvia Helena Santagneli, Mohammed El-Amraoui, and Younès Messaddeq
Opt. Mater. Express 6(5) 1451-1463 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. M. Lyubin and V. K. Tikhomirov, “Photodarkenind and photoinduced anisotropy in chalcogenide vitreous semiconductor-films,” J. Non-Cryst. Solids 114, 133–135 (1989).
    [Crossref]
  2. I. Kuzmina and J. Teteris, “Bragg and asymmetric-relief reflection gratings in As-S-Se thin films,” art. no. 59461G, in: 4th International Conference on Advanced Optical Materials and Devices, Tartu, Estonia, G9461–G9461 (2004).
  3. A. V. Kolobov and J. Tominaga, “Chalcogenide glasses in optical recording: Recent progress,” J. Optoelectron. Adv. Mater. 4, 679–686 (2002).
  4. P. Petkov, “Multicomponent germanium chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4, 747–750 (2002).
  5. K. Petkov and B. Dinev, “Photoinduced changes in optical properties of amorphous As-Ge-S thin films,” J. Mater. Sci. 29(2), 468–472 (1994).
    [Crossref]
  6. J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
    [Crossref]
  7. J. Teteris and M. Reinfelde, “Holographic recording in amorphous chalcogenide thin films,” J. Non-Cryst. Solids 353(13-15), 1450–1453 (2007).
    [Crossref]
  8. K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
    [Crossref]
  9. T. Todorov and L. Nikolova, “Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters,” Opt. Lett. 17(5), 358–359 (1992).
    [Crossref] [PubMed]
  10. B. G. Aitken and C. W. Ponader, “Property extrema in GeAs sulphide glasses,” J. Non-Cryst. Solids 274(1-3), 124–130 (2000).
    [Crossref]
  11. K. Palanjyan, R. Vallee, and T. Galstian, “Observation of giant local photoinduced birefringence in Ge25As30S45 thin films,” Opt. Mater. Express 5(5), 1122–1128 (2015).
    [Crossref]
  12. C. H. Kwak, J. T. Kim, and S. S. Lee, “Scalar and vector holographic gratings recorded in a photoanisotropic amorphous As2S3 thin film,” Opt. Lett. 13(6), 437–439 (1988).
    [Crossref] [PubMed]
  13. M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
    [Crossref]
  14. K. E. Asatryan, T. Galstian, and R. Vallée, “Optical polarization driven giant relief modulation in amorphous chalcogenide glasses,” Phys. Rev. Lett. 94(8), 087401 (2005).
    [Crossref] [PubMed]
  15. K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallee, E. Knystautas, and T. Galstian, “Study of photoinduced birefringence vs As content in thin GeAsS films,” Opt. Mater. Express 3(6), 671–683 (2013).
    [Crossref]
  16. K. Palanjyan, R. Vallee, and T. Galstian, “Experimental Observation of Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
    [Crossref]
  17. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivuty of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
    [Crossref]
  18. A. Ozols and M. Reinfelde, “Polarization holograms and diffraction anisotropy in amorphous chalcogenides,” J. Opt. A, Pure Appl. Opt. 6(3), S134–S141 (2004).
    [Crossref]
  19. V. M. Lyubin and V. K. Tikhomirov, “Novel photoinduced effects in chalcogenide glases,” J. Non-Cryst. Solids 135(1), 37–48 (1991).
    [Crossref]
  20. V. M. Lyubin and M. L. Klebanov, “Laser-induced anisotropic absorption, reflection, and scattering of light in chalcogenide glassy semiconductors,” Semiconductors 32(8), 817–823 (1998).
    [Crossref]
  21. G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
    [Crossref]
  22. S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198-200, 669–674 (1996).
    [Crossref]
  23. R. Birabassov, A. Yesayan, and T. V. Galstyan, “Nonreciprocal diffraction by spatial modulation of absorption and refraction,” Opt. Lett. 24(23), 1669–1671 (1999).
    [Crossref] [PubMed]
  24. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge, 2009).
  25. H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
    [Crossref] [PubMed]

2015 (2)

K. Palanjyan, R. Vallee, and T. Galstian, “Observation of giant local photoinduced birefringence in Ge25As30S45 thin films,” Opt. Mater. Express 5(5), 1122–1128 (2015).
[Crossref]

K. Palanjyan, R. Vallee, and T. Galstian, “Experimental Observation of Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
[Crossref]

2013 (1)

2007 (1)

J. Teteris and M. Reinfelde, “Holographic recording in amorphous chalcogenide thin films,” J. Non-Cryst. Solids 353(13-15), 1450–1453 (2007).
[Crossref]

2005 (1)

K. E. Asatryan, T. Galstian, and R. Vallée, “Optical polarization driven giant relief modulation in amorphous chalcogenide glasses,” Phys. Rev. Lett. 94(8), 087401 (2005).
[Crossref] [PubMed]

2004 (2)

A. Ozols and M. Reinfelde, “Polarization holograms and diffraction anisotropy in amorphous chalcogenides,” J. Opt. A, Pure Appl. Opt. 6(3), S134–S141 (2004).
[Crossref]

K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

2003 (2)

J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
[Crossref]

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

2002 (2)

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses in optical recording: Recent progress,” J. Optoelectron. Adv. Mater. 4, 679–686 (2002).

P. Petkov, “Multicomponent germanium chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4, 747–750 (2002).

2000 (1)

B. G. Aitken and C. W. Ponader, “Property extrema in GeAs sulphide glasses,” J. Non-Cryst. Solids 274(1-3), 124–130 (2000).
[Crossref]

1999 (1)

1998 (1)

V. M. Lyubin and M. L. Klebanov, “Laser-induced anisotropic absorption, reflection, and scattering of light in chalcogenide glassy semiconductors,” Semiconductors 32(8), 817–823 (1998).
[Crossref]

1996 (1)

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198-200, 669–674 (1996).
[Crossref]

1995 (1)

H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
[Crossref] [PubMed]

1994 (1)

K. Petkov and B. Dinev, “Photoinduced changes in optical properties of amorphous As-Ge-S thin films,” J. Mater. Sci. 29(2), 468–472 (1994).
[Crossref]

1993 (1)

M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
[Crossref]

1992 (1)

1991 (1)

V. M. Lyubin and V. K. Tikhomirov, “Novel photoinduced effects in chalcogenide glases,” J. Non-Cryst. Solids 135(1), 37–48 (1991).
[Crossref]

1989 (1)

V. M. Lyubin and V. K. Tikhomirov, “Photodarkenind and photoinduced anisotropy in chalcogenide vitreous semiconductor-films,” J. Non-Cryst. Solids 114, 133–135 (1989).
[Crossref]

1988 (1)

1984 (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivuty of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Aitken, B. G.

B. G. Aitken and C. W. Ponader, “Property extrema in GeAs sulphide glasses,” J. Non-Cryst. Solids 274(1-3), 124–130 (2000).
[Crossref]

Asatryan, K. E.

K. E. Asatryan, T. Galstian, and R. Vallée, “Optical polarization driven giant relief modulation in amorphous chalcogenide glasses,” Phys. Rev. Lett. 94(8), 087401 (2005).
[Crossref] [PubMed]

K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Birabassov, R.

Chen, G.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Dinev, B.

K. Petkov and B. Dinev, “Photoinduced changes in optical properties of amorphous As-Ge-S thin films,” J. Mater. Sci. 29(2), 468–472 (1994).
[Crossref]

Drabold, D. A.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Elliott, S. R.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
[Crossref]

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198-200, 669–674 (1996).
[Crossref]

Frederick, S.

K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Fritzsche, H.

H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
[Crossref] [PubMed]

Galstian, T.

K. Palanjyan, R. Vallee, and T. Galstian, “Experimental Observation of Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
[Crossref]

K. Palanjyan, R. Vallee, and T. Galstian, “Observation of giant local photoinduced birefringence in Ge25As30S45 thin films,” Opt. Mater. Express 5(5), 1122–1128 (2015).
[Crossref]

K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallee, E. Knystautas, and T. Galstian, “Study of photoinduced birefringence vs As content in thin GeAsS films,” Opt. Mater. Express 3(6), 671–683 (2013).
[Crossref]

K. E. Asatryan, T. Galstian, and R. Vallée, “Optical polarization driven giant relief modulation in amorphous chalcogenide glasses,” Phys. Rev. Lett. 94(8), 087401 (2005).
[Crossref] [PubMed]

K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Galstyan, T. V.

González-Leal, J. M.

J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
[Crossref]

Jain, H.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Khalid, S.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Kim, J. T.

Klebanov, M. L.

V. M. Lyubin and M. L. Klebanov, “Laser-induced anisotropic absorption, reflection, and scattering of light in chalcogenide glassy semiconductors,” Semiconductors 32(8), 817–823 (1998).
[Crossref]

Knystautas, E.

Kolobov, A. V.

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses in optical recording: Recent progress,” J. Optoelectron. Adv. Mater. 4, 679–686 (2002).

Krecmer, P.

J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
[Crossref]

Kwak, C. H.

Lee, S. S.

Li, J.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Lyubin, V. M.

V. M. Lyubin and M. L. Klebanov, “Laser-induced anisotropic absorption, reflection, and scattering of light in chalcogenide glassy semiconductors,” Semiconductors 32(8), 817–823 (1998).
[Crossref]

V. M. Lyubin and V. K. Tikhomirov, “Novel photoinduced effects in chalcogenide glases,” J. Non-Cryst. Solids 135(1), 37–48 (1991).
[Crossref]

V. M. Lyubin and V. K. Tikhomirov, “Photodarkenind and photoinduced anisotropy in chalcogenide vitreous semiconductor-films,” J. Non-Cryst. Solids 114, 133–135 (1989).
[Crossref]

Markovski, P.

M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
[Crossref]

Mateev, V.

M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
[Crossref]

Messaddeq, S. H.

Messaddeq, Y.

Mitkova, M.

M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
[Crossref]

Nikolova, L.

T. Todorov and L. Nikolova, “Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters,” Opt. Lett. 17(5), 358–359 (1992).
[Crossref] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivuty of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Ozols, A.

A. Ozols and M. Reinfelde, “Polarization holograms and diffraction anisotropy in amorphous chalcogenides,” J. Opt. A, Pure Appl. Opt. 6(3), S134–S141 (2004).
[Crossref]

Palanjyan, K.

Petkov, K.

K. Petkov and B. Dinev, “Photoinduced changes in optical properties of amorphous As-Ge-S thin films,” J. Mater. Sci. 29(2), 468–472 (1994).
[Crossref]

Petkov, P.

P. Petkov, “Multicomponent germanium chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4, 747–750 (2002).

Petkova, T.

M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
[Crossref]

Ponader, C. W.

B. G. Aitken and C. W. Ponader, “Property extrema in GeAs sulphide glasses,” J. Non-Cryst. Solids 274(1-3), 124–130 (2000).
[Crossref]

Prokop, J.

J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
[Crossref]

Reinfelde, M.

J. Teteris and M. Reinfelde, “Holographic recording in amorphous chalcogenide thin films,” J. Non-Cryst. Solids 353(13-15), 1450–1453 (2007).
[Crossref]

A. Ozols and M. Reinfelde, “Polarization holograms and diffraction anisotropy in amorphous chalcogenides,” J. Opt. A, Pure Appl. Opt. 6(3), S134–S141 (2004).
[Crossref]

Teteris, J.

J. Teteris and M. Reinfelde, “Holographic recording in amorphous chalcogenide thin films,” J. Non-Cryst. Solids 353(13-15), 1450–1453 (2007).
[Crossref]

Tikhomirov, V. K.

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198-200, 669–674 (1996).
[Crossref]

V. M. Lyubin and V. K. Tikhomirov, “Novel photoinduced effects in chalcogenide glases,” J. Non-Cryst. Solids 135(1), 37–48 (1991).
[Crossref]

V. M. Lyubin and V. K. Tikhomirov, “Photodarkenind and photoinduced anisotropy in chalcogenide vitreous semiconductor-films,” J. Non-Cryst. Solids 114, 133–135 (1989).
[Crossref]

Todorov, T.

T. Todorov and L. Nikolova, “Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters,” Opt. Lett. 17(5), 358–359 (1992).
[Crossref] [PubMed]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivuty of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Tominaga, J.

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses in optical recording: Recent progress,” J. Optoelectron. Adv. Mater. 4, 679–686 (2002).

Vallee, R.

K. Palanjyan, R. Vallee, and T. Galstian, “Observation of giant local photoinduced birefringence in Ge25As30S45 thin films,” Opt. Mater. Express 5(5), 1122–1128 (2015).
[Crossref]

K. Palanjyan, R. Vallee, and T. Galstian, “Experimental Observation of Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
[Crossref]

K. Palanjyan, S. H. Messaddeq, Y. Messaddeq, R. Vallee, E. Knystautas, and T. Galstian, “Study of photoinduced birefringence vs As content in thin GeAsS films,” Opt. Mater. Express 3(6), 671–683 (2013).
[Crossref]

K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

Vallée, R.

K. E. Asatryan, T. Galstian, and R. Vallée, “Optical polarization driven giant relief modulation in amorphous chalcogenide glasses,” Phys. Rev. Lett. 94(8), 087401 (2005).
[Crossref] [PubMed]

Vlcek, M.

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

Yesayan, A.

Appl. Phys. Lett. (2)

K. E. Asatryan, S. Frederick, T. Galstian, and R. Vallee, “Recording of polarization holograms in photodarkened amorphous chalcogenide films,” Appl. Phys. Lett. 84(10), 1626–1628 (2004).
[Crossref]

G. Chen, H. Jain, M. Vlcek, S. Khalid, J. Li, D. A. Drabold, and S. R. Elliott, “Observation of light polarization-dependent structural changes in chalcogenide glasses,” Appl. Phys. Lett. 82(5), 706–708 (2003).
[Crossref]

J. Mater. Sci. (1)

K. Petkov and B. Dinev, “Photoinduced changes in optical properties of amorphous As-Ge-S thin films,” J. Mater. Sci. 29(2), 468–472 (1994).
[Crossref]

J. Non-Cryst. Solids (8)

J. M. González-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “Holometer: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326-327, 416–424 (2003).
[Crossref]

J. Teteris and M. Reinfelde, “Holographic recording in amorphous chalcogenide thin films,” J. Non-Cryst. Solids 353(13-15), 1450–1453 (2007).
[Crossref]

K. Palanjyan, R. Vallee, and T. Galstian, “Experimental Observation of Photoinduced bond conversions in GeAsS thin films,” J. Non-Cryst. Solids 410, 65–73 (2015).
[Crossref]

S. R. Elliott and V. K. Tikhomirov, “Vectoral and scalar photoinduced effects in chalcogenide glasses,” J. Non-Cryst. Solids 198-200, 669–674 (1996).
[Crossref]

V. M. Lyubin and V. K. Tikhomirov, “Novel photoinduced effects in chalcogenide glases,” J. Non-Cryst. Solids 135(1), 37–48 (1991).
[Crossref]

B. G. Aitken and C. W. Ponader, “Property extrema in GeAs sulphide glasses,” J. Non-Cryst. Solids 274(1-3), 124–130 (2000).
[Crossref]

M. Mitkova, T. Petkova, P. Markovski, and V. Mateev, “Photoinduced changes by polarization holographic recording in Se70Ag12I12 thin film,” J. Non-Cryst. Solids 166, 1203–1206 (1993).
[Crossref]

V. M. Lyubin and V. K. Tikhomirov, “Photodarkenind and photoinduced anisotropy in chalcogenide vitreous semiconductor-films,” J. Non-Cryst. Solids 114, 133–135 (1989).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

A. Ozols and M. Reinfelde, “Polarization holograms and diffraction anisotropy in amorphous chalcogenides,” J. Opt. A, Pure Appl. Opt. 6(3), S134–S141 (2004).
[Crossref]

J. Optoelectron. Adv. Mater. (2)

A. V. Kolobov and J. Tominaga, “Chalcogenide glasses in optical recording: Recent progress,” J. Optoelectron. Adv. Mater. 4, 679–686 (2002).

P. Petkov, “Multicomponent germanium chalcogenide glasses,” J. Optoelectron. Adv. Mater. 4, 747–750 (2002).

Opt. Acta (Lond.) (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivuty of polarization holographic recording,” Opt. Acta (Lond.) 31(5), 579–588 (1984).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (2)

Phys. Rev. B Condens. Matter (1)

H. Fritzsche, “Optical anisotropies in chalcogenide glasses induced by band-gap light,” Phys. Rev. B Condens. Matter 52(22), 15854–15861 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

K. E. Asatryan, T. Galstian, and R. Vallée, “Optical polarization driven giant relief modulation in amorphous chalcogenide glasses,” Phys. Rev. Lett. 94(8), 087401 (2005).
[Crossref] [PubMed]

Semiconductors (1)

V. M. Lyubin and M. L. Klebanov, “Laser-induced anisotropic absorption, reflection, and scattering of light in chalcogenide glassy semiconductors,” Semiconductors 32(8), 817–823 (1998).
[Crossref]

Other (2)

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge, 2009).

I. Kuzmina and J. Teteris, “Bragg and asymmetric-relief reflection gratings in As-S-Se thin films,” art. no. 59461G, in: 4th International Conference on Advanced Optical Materials and Devices, Tartu, Estonia, G9461–G9461 (2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental set-up for grating recording and study: Pump – Ar+ laser (514.5 nm); λ/2 – half-wave plate; WP – Wollaston prism; M – mirror; F – density filter, probe beam – He-Ne laser (632.8 nm); λ/4 – quarter-wave plate; S – sample; D1,2,3 – photodetectors.
Fig. 2
Fig. 2 Remnant diffraction efficiencies (see, e.g., point B, Fig. 4) of vector gratings recorded in Ge25As30S45 (black dashed) and As2S3 (red solid) thin films as a function of temperature. Lines are guides to the eye. Vertical dashed lines show the glass transition temperatures of As2S3 (180°C) and Ge25As30S45 (350°C).
Fig. 3
Fig. 3 Maximal transient diffraction efficiency (%) of vector (solid line) and scalar (dashed line) gratings recorded in the same Ge25As30S45 film as a function of pump intensity. The vector grating was recorded by (RCP + LCP) polarized beams while the scalar grating was recorded with two linearly s-polarised beams. Broken lines are guide to the eye.
Fig. 4
Fig. 4 Dynamics of diffraction efficiency (%) evolution for scalar and vector gratings recorded on the same Ge25As30S45 film. The scalar gratings (solid curve) were recorded by two linearly s-polarised beams, while the vector gratings were recorded by (s + p) polarized beams (dashed dot curve) and by circularly (RCP + LCP) polarized beams (dotted curve).
Fig. 5
Fig. 5 Optical microscope images (in unpolarized light) of recorded gratings on the same Ge25As30S45 thin film: (a) scalar gratings written by (s + s) polarization beams; (b) vector gratings written by (RCP + LCP) polarization beams; (c) vector gratings written by (s + p) polarization beams.
Fig. 6
Fig. 6 Diffraction (in arbitrary units) of + 1 and −1 diffracted orders as a function of the rotation angle of the quarter-wave plate (the ellipticity of the incident probe beam polarization). Ge25As30S45 film thickness is 7 µm. Broken lines are guides to the eye.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = I d I t + I d

Metrics