Abstract

Nanohole-based biosensors are some of the most promising next generation biosensor platforms thanks to their size selectivity and position dependent sensing properties. For practical applications, large-area fabrication with properly controlled dimensions and sensor performance is essential. Here, we investigate the size controllability of hexagonally ordered plasmonic nanohole arrays produced through self-assembly of mask colloid nanoparticles, and analyzed the hole-size dependent sensor properties by electromagnetic simulations. Size-reduction of the colloids to about half of their original size is the smallest achievable hole size, which roughly corresponds to the optimal diameter for the refractive index sensing. The field enhancement tuning is also discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of ordering of gold nanohole arrays on refractive index sensing

Brindhu Malani S and P. Viswanath
J. Opt. Soc. Am. B 35(10) 2501-2508 (2018)

Sensing with periodic nanohole arrays

Andre-Pierre Blanchard-Dionne and Michel Meunier
Adv. Opt. Photon. 9(4) 891-940 (2017)

Fano resonances in plasmonic heptamer nano-hole arrays

Akram Hajebifard and Pierre Berini
Opt. Express 25(16) 18566-18580 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
    [Crossref] [PubMed]
  4. A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
    [Crossref] [PubMed]
  5. R. T. Hill, “Plasmonic biosensors,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(2), 152–168 (2015).
    [Crossref] [PubMed]
  6. I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
    [Crossref] [PubMed]
  7. C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
    [Crossref] [PubMed]
  8. M. P. Jonsson and C. Dekker, “Plasmonic nanopore for electrical profiling of optical intensity landscapes,” Nano Lett. 13(3), 1029–1033 (2013).
    [Crossref] [PubMed]
  9. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
    [Crossref] [PubMed]
  10. M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
    [Crossref] [PubMed]
  11. K. Nakamoto, R. Kurita, and O. Niwa, “Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique,” Anal. Chem. 84(7), 3187–3191 (2012).
    [Crossref] [PubMed]
  12. H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
    [Crossref] [PubMed]
  13. A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
    [Crossref] [PubMed]
  14. T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
    [Crossref] [PubMed]
  15. T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
    [Crossref] [PubMed]
  16. F. Przybilla, C. Genet, and T. W. Ebbesen, “Long vs. short-range orders in random subwavelength hole arrays,” Opt. Express 20(4), 4697–4709 (2012).
    [Crossref] [PubMed]
  17. J. Junesch and T. Sannomiya, “Reflection phase and amplitude determination of short-range ordered plasmonic nanohole arrays,” J. Phys. Chem. Lett. 5(1), 247–252 (2014).
    [Crossref] [PubMed]
  18. Y. Ekşioğlu, A. E. Cetin, and J. Petráček, “Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices,” Plasmonics (2015), doi:.
    [Crossref]
  19. C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
    [Crossref] [PubMed]
  20. A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
    [Crossref]
  21. S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
    [Crossref] [PubMed]
  22. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
    [Crossref] [PubMed]
  23. H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
    [Crossref]
  24. M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
    [PubMed]
  25. S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
    [Crossref] [PubMed]
  26. C. Hafner, “Boundary methods for optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3435–3447 (2007).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. F. J. G. de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  29. E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication,” Langmuir 30(41), 12354–12361 (2014).
    [Crossref] [PubMed]
  30. M. P. Murray-Méthot, M. Ratel, and J. F. Masson, “Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays,” J. Phys. Chem. C 114(18), 8268–8275 (2010).
    [Crossref]
  31. W. G. Yan, Z. B. Li, and J. G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
    [Crossref] [PubMed]
  32. T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
    [Crossref] [PubMed]
  33. Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
    [Crossref]
  34. A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
    [Crossref]
  35. T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
    [Crossref] [PubMed]
  36. P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
    [Crossref] [PubMed]
  37. M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
    [Crossref]
  38. C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
    [Crossref]
  39. F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
    [Crossref] [PubMed]
  40. S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
    [Crossref] [PubMed]
  41. J. Junesch and T. Sannomiya, “Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer,” ACS Appl. Mater. Interfaces 6(9), 6322–6331 (2014).
    [Crossref] [PubMed]

2015 (6)

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

R. T. Hill, “Plasmonic biosensors,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(2), 152–168 (2015).
[Crossref] [PubMed]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

W. G. Yan, Z. B. Li, and J. G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[Crossref] [PubMed]

2014 (6)

J. Junesch and T. Sannomiya, “Reflection phase and amplitude determination of short-range ordered plasmonic nanohole arrays,” J. Phys. Chem. Lett. 5(1), 247–252 (2014).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

J. Junesch and T. Sannomiya, “Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer,” ACS Appl. Mater. Interfaces 6(9), 6322–6331 (2014).
[Crossref] [PubMed]

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
[Crossref] [PubMed]

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

2013 (8)

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
[Crossref] [PubMed]

M. P. Jonsson and C. Dekker, “Plasmonic nanopore for electrical profiling of optical intensity landscapes,” Nano Lett. 13(3), 1029–1033 (2013).
[Crossref] [PubMed]

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

2012 (5)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

K. Nakamoto, R. Kurita, and O. Niwa, “Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique,” Anal. Chem. 84(7), 3187–3191 (2012).
[Crossref] [PubMed]

F. Przybilla, C. Genet, and T. W. Ebbesen, “Long vs. short-range orders in random subwavelength hole arrays,” Opt. Express 20(4), 4697–4709 (2012).
[Crossref] [PubMed]

2011 (2)

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[Crossref] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

2010 (3)

M. P. Murray-Méthot, M. Ratel, and J. F. Masson, “Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays,” J. Phys. Chem. C 114(18), 8268–8275 (2010).
[Crossref]

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
[Crossref] [PubMed]

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

2009 (1)

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

2008 (2)

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

2007 (3)

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

F. J. G. de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

C. Hafner, “Boundary methods for optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3435–3447 (2007).
[Crossref]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2004 (1)

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdulhalim, I.

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
[Crossref] [PubMed]

Akinoglu, E. M.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

Alù, A.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Alvarez, M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Andryieuski, A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Armenise, M. N.

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[Crossref] [PubMed]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Bantz, K. C.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Barnes, T. M.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Brolo, A. G.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
[Crossref] [PubMed]

Campanella, C. E.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Campanella, C. M.

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Castro, C. M.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Cetin, A. E.

Y. Ekşioğlu, A. E. Cetin, and J. Petráček, “Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices,” Plasmonics (2015), doi:.
[Crossref]

Chen, L. J.

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

Chou, L. J.

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chudzinski, P.

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

Ciminelli, C.

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[Crossref] [PubMed]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Conteduca, D.

Ctistis, G.

Cushing, S. K.

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Dahlin, A. B.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

de Abajo, F. J. G.

F. J. G. de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Dekker, C.

M. P. Jonsson and C. Dekker, “Plasmonic nanopore for electrical profiling of optical intensity landscapes,” Nano Lett. 13(3), 1029–1033 (2013).
[Crossref] [PubMed]

Dell’Olio, F.

F. Dell’Olio, D. Conteduca, C. Ciminelli, and M. N. Armenise, “New ultrasensitive resonant photonic platform for label-free biosensing,” Opt. Express 23(22), 28593–28604 (2015).
[Crossref] [PubMed]

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dielacher, B.

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

Ebbesen, T. W.

Eksioglu, Y.

Y. Ekşioğlu, A. E. Cetin, and J. Petráček, “Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices,” Plasmonics (2015), doi:.
[Crossref]

Escobedo, C.

C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
[Crossref] [PubMed]

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
[Crossref] [PubMed]

Estevez, M. C.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Feng, J.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

Fumagalli, P.

Garcia-Martin, A.

Genet, C.

Giersig, M.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011).
[Crossref] [PubMed]

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

Gordon, R.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
[Crossref] [PubMed]

Gramotnev, D. K.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Hafner, C.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

C. Hafner, “Boundary methods for optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3435–3447 (2007).
[Crossref]

Halas, N. J.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Haynes, C. L.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Hill, R. T.

R. T. Hill, “Plasmonic biosensors,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(2), 152–168 (2015).
[Crossref] [PubMed]

Hjörvarsson, B.

Höök, F.

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

Ikenoya, Y.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

Im, H.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Jefimovs, K.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Jeon, H. C.

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

Jeon, T. Y.

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jonsson, M. P.

M. P. Jonsson and C. Dekker, “Plasmonic nanopore for electrical profiling of optical intensity landscapes,” Nano Lett. 13(3), 1029–1033 (2013).
[Crossref] [PubMed]

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

Jönsson, P.

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

Junesch, J.

J. Junesch and T. Sannomiya, “Reflection phase and amplitude determination of short-range ordered plasmonic nanohole arrays,” J. Phys. Chem. Lett. 5(1), 247–252 (2014).
[Crossref] [PubMed]

J. Junesch and T. Sannomiya, “Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer,” ACS Appl. Mater. Interfaces 6(9), 6322–6331 (2014).
[Crossref] [PubMed]

Jurevic, R.

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Kandulski, W.

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

Kapaklis, V.

Kasemo, B.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

Kempa, K.

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Kosiorek, A.

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

Kurita, R.

K. Nakamoto, R. Kurita, and O. Niwa, “Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique,” Anal. Chem. 84(7), 3187–3191 (2012).
[Crossref] [PubMed]

Langhammer, C.

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Lassiter, J. B.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Lavrinenko, A. V.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Lechuga, L. M.

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Lee, H.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Lee, S. H.

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Lee, S. Y.

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

Lesuffleur, A.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Li, M.

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Li, Z.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

Li, Z. B.

W. G. Yan, Z. B. Li, and J. G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

Lin, L.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

Lin, Y. K.

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Liu, Y.

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Malureanu, R.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Masson, J. F.

M. P. Murray-Méthot, M. Ratel, and J. F. Masson, “Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays,” J. Phys. Chem. C 114(18), 8268–8275 (2010).
[Crossref]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Melander, E.

Mirin, N.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Morfa, A. J.

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

Murray-Méthot, M. P.

M. P. Murray-Méthot, M. Ratel, and J. F. Masson, “Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays,” J. Phys. Chem. C 114(18), 8268–8275 (2010).
[Crossref]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Nakamoto, K.

K. Nakamoto, R. Kurita, and O. Niwa, “Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique,” Anal. Chem. 84(7), 3187–3191 (2012).
[Crossref] [PubMed]

Nakamura, Y.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

Nehl, C. L.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Niwa, O.

K. Nakamoto, R. Kurita, and O. Niwa, “Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique,” Anal. Chem. 84(7), 3187–3191 (2012).
[Crossref] [PubMed]

Nordlander, P.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Oh, S. H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Papaioannou, E. T.

Pappas, S. D.

Park, S. G.

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

Park, T. H.

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

Park, Y. I.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Patoka, P.

Peterson, V. M.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Petrácek, J.

Y. Ekşioğlu, A. E. Cetin, and J. Petráček, “Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices,” Plasmonics (2015), doi:.
[Crossref]

Polman, A.

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

Przybilla, F.

Radko, I. P.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Rajendran, P.

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

Ratel, M.

M. P. Murray-Méthot, M. Ratel, and J. F. Masson, “Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays,” J. Phys. Chem. C 114(18), 8268–8275 (2010).
[Crossref]

Reilly, T. H.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

Rowlen, K. L.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

Sannomiya, T.

J. Junesch and T. Sannomiya, “Reflection phase and amplitude determination of short-range ordered plasmonic nanohole arrays,” J. Phys. Chem. Lett. 5(1), 247–252 (2014).
[Crossref] [PubMed]

J. Junesch and T. Sannomiya, “Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer,” ACS Appl. Mater. Interfaces 6(9), 6322–6331 (2014).
[Crossref] [PubMed]

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Scholder, O.

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Schwind, M.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

Shao, H.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Shi, J.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

Sinton, D.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
[Crossref] [PubMed]

Su, S.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

Sugihara, K.

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

Susa, M.

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

Syrenova, S.

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Tenent, R. C.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

Tian, J. G.

W. G. Yan, Z. B. Li, and J. G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

Ting, H. W.

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

Tsai, C. J.

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

van de Lagemaat, J.

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

Volkov, V. S.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Vörös, J.

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

Wadell, C.

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Weissleder, R.

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Wu, N.

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Wu, Y. J.

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

Yan, W. G.

W. G. Yan, Z. B. Li, and J. G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

Yang, S. M.

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

Zenin, V. A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Zenobi-Wong, M.

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

Zhang, Z.

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

Zheng, P.

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Zoric, I.

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

ACS Appl. Mater. Interfaces (2)

T. Y. Jeon, S. G. Park, S. Y. Lee, H. C. Jeon, and S. M. Yang, “Shape control of Ag nanostructures for practical SERS substrates,” ACS Appl. Mater. Interfaces 5(2), 243–248 (2013).
[Crossref] [PubMed]

J. Junesch and T. Sannomiya, “Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer,” ACS Appl. Mater. Interfaces 6(9), 6322–6331 (2014).
[Crossref] [PubMed]

ACS Nano (2)

T. H. Park, N. Mirin, J. B. Lassiter, C. L. Nehl, N. J. Halas, and P. Nordlander, “Optical properties of a nanosized hole in a thin metallic film,” ACS Nano 2(1), 25–32 (2008).
[Crossref] [PubMed]

T. H. Reilly, R. C. Tenent, T. M. Barnes, K. L. Rowlen, and J. van de Lagemaat, “Controlling the optical properties of plasmonic disordered nanohole silver films,” ACS Nano 4(2), 615–624 (2010).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

A. B. Dahlin, B. Dielacher, P. Rajendran, K. Sugihara, T. Sannomiya, M. Zenobi-Wong, and J. Vörös, “Electrochemical plasmonic sensors,” Anal. Bioanal. Chem. 402(5), 1773–1784 (2012).
[Crossref] [PubMed]

Anal. Chem. (2)

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Flow-Through vs Flow-Over: Analysis of Transport and Binding in Nanohole Array Plasmonic Biosensors,” Anal. Chem. 82(24), 10015–10020 (2010).
[Crossref] [PubMed]

K. Nakamoto, R. Kurita, and O. Niwa, “Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique,” Anal. Chem. 84(7), 3187–3191 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[Crossref]

Biointerphases (1)

M. P. Jonsson, A. B. Dahlin, P. Jönsson, and F. Höök, “Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films,” Biointerphases 3(3), FD30–FD40 (2008).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(22), 3593–3599 (2013).
[Crossref]

J. Nanosci. Nanotechnol. (1)

W. G. Yan, Z. B. Li, and J. G. Tian, “Tunable fabrication and optical properties of metal nano hole arrays,” J. Nanosci. Nanotechnol. 15(2), 1704–1707 (2015).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

M. P. Murray-Méthot, M. Ratel, and J. F. Masson, “Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays,” J. Phys. Chem. C 114(18), 8268–8275 (2010).
[Crossref]

Y. Ikenoya, M. Susa, J. Shi, Y. Nakamura, A. B. Dahlin, and T. Sannomiya, “Optical resonances in short-range ordered nanoholes in ultrathin aluminum/aluminum nitride multilayers,” J. Phys. Chem. C 117(12), 6373–6382 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Junesch and T. Sannomiya, “Reflection phase and amplitude determination of short-range ordered plasmonic nanohole arrays,” J. Phys. Chem. Lett. 5(1), 247–252 (2014).
[Crossref] [PubMed]

Lab Chip (1)

C. Escobedo, “On-chip nanohole array based sensing: a review,” Lab Chip 13(13), 2445–2463 (2013).
[Crossref] [PubMed]

Langmuir (2)

E. M. Akinoglu, A. J. Morfa, and M. Giersig, “Understanding anisotropic plasma etching of two-dimensional polystyrene opals for advanced materials fabrication,” Langmuir 30(41), 12354–12361 (2014).
[Crossref] [PubMed]

S. H. Lee, K. C. Bantz, N. C. Lindquist, S. H. Oh, and C. L. Haynes, “Self-assembled plasmonic nanohole arrays,” Langmuir 25(23), 13685–13693 (2009).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

M. C. Estevez, M. Alvarez, and L. M. Lechuga, “Integrated optical devices for lab-on-a-chip biosensing applications,” Laser Photonics Rev. 6(4), 463–487 (2012).
[Crossref]

Nano Lett. (5)

A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, and M. Giersig, “Shadow nanosphere lithography: simulation and experiment,” Nano Lett. 4(7), 1359–1363 (2004).
[Crossref]

M. P. Jonsson and C. Dekker, “Plasmonic nanopore for electrical profiling of optical intensity landscapes,” Nano Lett. 13(3), 1029–1033 (2013).
[Crossref] [PubMed]

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antenna,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

M. Schwind, B. Kasemo, and I. Zorić, “Localized and Propagating plasmons in metal films with nanoholes,” Nano Lett. 13(4), 1743–1750 (2013).
[PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Nanoscale (1)

P. Zheng, M. Li, R. Jurevic, S. K. Cushing, Y. Liu, and N. Wu, “A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva,” Nanoscale 7(25), 11005–11012 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

S. Su, L. Lin, Z. Li, J. Feng, and Z. Zhang, “The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays,” Nanoscale Res. Lett. 8(1), 405 (2013).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. Im, H. Shao, Y. I. Park, V. M. Peterson, C. M. Castro, R. Weissleder, and H. Lee, “Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor,” Nat. Biotechnol. 32(5), 490–495 (2014).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

C. Hafner, “Boundary methods for optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3435–3447 (2007).
[Crossref]

Prog. Quantum Electron. (1)

C. Ciminelli, C. M. Campanella, F. Dell’Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Prog. Quantum Electron. 37(2), 51–107 (2013).
[Crossref]

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. G. de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Science (2)

A. F. Koenderink, A. Alù, and A. Polman, “Nanophotonics: Shrinking light-based technology,” Science 348(6234), 516–521 (2015).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Small (2)

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
[Crossref] [PubMed]

T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner, and A. B. Dahlin, “Investigation of Plasmon resonances in metal films with nanohole arrays for biosensing applications,” Small 7(12), 1653–1663 (2011).
[Crossref] [PubMed]

Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (1)

R. T. Hill, “Plasmonic biosensors,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(2), 152–168 (2015).
[Crossref] [PubMed]

Other (1)

Y. Ekşioğlu, A. E. Cetin, and J. Petráček, “Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices,” Plasmonics (2015), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of the hexagonal nanohole array fabrication by colloidal mask self-assembly. The PS spheres in the deposited colloid mask are shrunk by plasma etching and are, after metal film deposition, removed by tape-stripping.
Fig. 2
Fig. 2 SEM images of deposited colloid masks after (a) 0 min, (b) 4 min, (c) 8 min, and (d) 12 min etching at a constant pressure. (e) Colloid diameter plot as a function of plasma etching time at different pressure conditions (see main text). The scale is same for all the images (a-d).
Fig. 3
Fig. 3 SEM images of nanoholes with a diameter of (a) 156 nm, (b) 210nm, (c) 238 nm, and (d-f) respectively corresponding optical transmission spectra. The samples were fabricated through the “no-supply” method. The scale is same for all the images (a-d).
Fig. 4
Fig. 4 (a) Simulated spectra of hexagonal nanohole arrays in air with varying hole diameters, (b) resonance wavelength and intensity plot for both transmission peak and dip in air, and (c) RI sensitivity for transmission peak and dip calculated from spectra in air and water. Experimental data points for the resonance wavelengths and RI sensitivity are superimposed as green symbols.
Fig. 5
Fig. 5 Simulated time-averaged electric field patterns in water at (a) transmission dip and (b) transmission peak wavelengths for different hole diameters. The electric field is polarized horizontally in the figure. The top-view plots (lower rows) show the field 1 nm above the film surface. Green circles corresponding to the hole diameter are superimposed in the top-view field plots to indicate the position and the size of the holes.
Fig. 6
Fig. 6 Line profiles of the simulated electric field enhancement at (a) transmission dip and (b) transmission peak in water. The profile is plotted from the center of the hole along the electric field polarization direction. The electric field is detected 1 nm above the top most film and scanned along the film surface, schematically illustrated by the arrow in the inset.
Fig. 7
Fig. 7 AFM images of (a) 210 nm and (b) 238 nm hole size samples.
Fig. 8
Fig. 8 Comparison of the transmission peak and dip wavelengths in water, and the resonance of a single hole calculated from the dispersion relation in water.

Metrics