Abstract

We report on the nonlinear photochemistry fabrication of three-dimensional silver (Ag) microstructures in microfluidic channels for volumetric surface-enhanced Raman scattering (3D SERS). The fabrication of high resolution 3D Ag microstructures is obtained by a two-photon induced reduction process of silver cations, which is restricted at the focal point of a Q-switched Nd:YAG microlaser (sub-nanosecond pulses at 1064 nm). Firstly, 3D Ag micro-pillars made on cover glass showed a 3D SERS detection limit of Oxazine 720 as low as 10−8 M. Secondly, we directly fabricated 3D microstructures within microfluidic channels, and demonstrated their 3D SERS capability. The micro-cube geometry gave a significantly larger 3D SERS signal than the micro-pillar geometry. This result demonstration is paving the way for further optimization routes by varying the geometry, the size, and the density of complex 3D structures which can be obtained by direct laser writing based on two-photon induced chemistry.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering

Cheng-Hsiang Lin, Lan Jiang, Yen-Hsin Chai, Hai Xiao, Shean-Jen Chen, and Hai-Lung Tsai
Opt. Express 17(24) 21581-21589 (2009)

Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate

Jie Zhang, Tuo Fan, Xiaolei Zhang, Chunhong Lai, and Yong Zhu
Appl. Opt. 53(6) 1159-1165 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. B Biol. Sci. 368, 20120026 (2013).
  3. L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
    [Crossref]
  4. Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
    [Crossref] [PubMed]
  5. H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
    [Crossref]
  6. M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
    [Crossref]
  7. G. Lu, C. Li, and G. Shi, “Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering,” Chem. Mater. 19(14), 3433–3440 (2007).
    [Crossref]
  8. X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
    [Crossref] [PubMed]
  9. Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
    [Crossref] [PubMed]
  10. F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
    [Crossref] [PubMed]
  11. B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
    [Crossref] [PubMed]
  12. Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
    [Crossref]
  13. H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR • 3D Analysis • Photopolymerization, Advances in Polymer Science No. 170 (Springer Berlin Heidelberg, 2004), pp. 169–273.
  14. K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
    [Crossref]
  15. M. Rumi, S. Barlow, J. Wang, J. W. Perry, and S. R. Marder, “Two-Photon Absorbing Materials and Two-Photon-Induced Chemistry,” in Photoresponsive Polymers I, S. R. Marder and K.-S. Lee, eds., Advances in Polymer Science No. 213 (Springer Berlin Heidelberg, 2008), pp. 1–95.
  16. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
    [Crossref] [PubMed]
  17. T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
    [Crossref]
  18. S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008).
    [Crossref] [PubMed]
  19. L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
    [Crossref]
  20. T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
    [Crossref] [PubMed]
  21. C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19(9), 8267–8276 (2011).
    [Crossref] [PubMed]
  22. M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
    [Crossref]
  23. B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
    [Crossref] [PubMed]
  24. C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
    [Crossref]
  25. L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
    [Crossref] [PubMed]
  26. M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
    [Crossref] [PubMed]
  27. D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
    [Crossref]
  28. D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
    [Crossref]
  29. A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
    [Crossref] [PubMed]
  30. M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
    [Crossref] [PubMed]
  31. A. G. Brolo and A. C. Sanderson, “Surface-enhanced Raman scattering (SERS) from a silver electrode modified with oxazine 720,” Can. J. Chem. 82(10), 1474–1480 (2004).
    [Crossref]
  32. “Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/
  33. R. C. Weast, CRC Handbook of Chemistry and Physics: 69th Edition (CRC Press Inc., 1988).
  34. M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
    [Crossref]

2015 (1)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

2014 (4)

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

2013 (3)

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. B Biol. Sci. 368, 20120026 (2013).

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

2012 (3)

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

2011 (7)

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
[Crossref]

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19(9), 8267–8276 (2011).
[Crossref] [PubMed]

2009 (3)

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref] [PubMed]

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

2008 (3)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

S. Maruo and T. Saeki, “Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix,” Opt. Express 16(2), 1174–1179 (2008).
[Crossref] [PubMed]

2007 (1)

G. Lu, C. Li, and G. Shi, “Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering,” Chem. Mater. 19(14), 3433–3440 (2007).
[Crossref]

2006 (1)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
[Crossref]

2005 (1)

A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
[Crossref] [PubMed]

2004 (1)

A. G. Brolo and A. C. Sanderson, “Surface-enhanced Raman scattering (SERS) from a silver electrode modified with oxazine 720,” Can. J. Chem. 82(10), 1474–1480 (2004).
[Crossref]

2002 (1)

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Amato, L.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Andraud, C.

Astilean, S.

M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
[Crossref]

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

Baldeck, P.

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Baldeck, P. L.

Baldeck, P. P.

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Bellini, N.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Bouriau, M.

Brolo, A. G.

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

A. G. Brolo and A. C. Sanderson, “Surface-enhanced Raman scattering (SERS) from a silver electrode modified with oxazine 720,” Can. J. Chem. 82(10), 1474–1480 (2004).
[Crossref]

Casalegno, R.

Cerullo, G.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Chan, W.-T.

A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
[Crossref] [PubMed]

Chen, L.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Chen, L.-M.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Chen, Q.-D.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Cheng, Y.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Chiang, C.-H.

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Ding, H.

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Dong, W.-F.

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

Eaton, S. M.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Escobedo, C.

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

Fan, M.

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Gan, Z.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Giloan, M.

M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
[Crossref]

Gu, Y.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Guo, H.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Han, S.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Hansen, M.

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

He, F.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

He, L.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

He, Y.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hjortø, G. M.

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

Hong, X.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref] [PubMed]

Huang, J.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Hui, A. Y. N.

A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
[Crossref] [PubMed]

Iosin, M.

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

Irudayaraj, J.

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. B Biol. Sci. 368, 20120026 (2013).

Ishikawa, A.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
[Crossref]

Jeong, Y. J.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

Kawata, S.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
[Crossref]

Kim, D.-P.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

Kim, R. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Kong, H.-J.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

Larsen, N. B.

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

Lau, S.-P.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Lee, C. K.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Lee, K.-S.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Lee, S. T.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Lee, S.-T.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Lee, Y. H.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Li, C.

G. Lu, C. Li, and G. Shi, “Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering,” Chem. Mater. 19(14), 3433–3440 (2007).
[Crossref]

Li, D.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Li, Z.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Liang, H.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Liao, Y.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Lim, T. W.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

Lin, B.

A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
[Crossref] [PubMed]

Lin, C.-F

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Lin, C.-K.

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Lin, C.-L.

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19(9), 8267–8276 (2011).
[Crossref] [PubMed]

Lin, J.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Ling, X. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Liu, Y.-J.

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Lu, G.

G. Lu, C. Li, and G. Shi, “Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering,” Chem. Mater. 19(14), 3433–3440 (2007).
[Crossref]

Ma, Z.-C.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Martineau, C.

Maruo, S.

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Met, Ö.

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

Midorikawa, K.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Niu, L.-G.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Nizak, C.

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

Olsen, M. H.

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

Osellame, R.

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

Pan, M.-J.

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Park, S. H.

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Phang, I. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Qiao, L.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Saeki, T.

Sanderson, A. C.

A. G. Brolo and A. C. Sanderson, “Surface-enhanced Raman scattering (SERS) from a silver electrode modified with oxazine 720,” Can. J. Chem. 82(10), 1474–1480 (2004).
[Crossref]

Scheul, T.

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

Shen, X. S.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref] [PubMed]

Shi, G.

G. Lu, C. Li, and G. Shi, “Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering,” Chem. Mater. 19(14), 3433–3440 (2007).
[Crossref]

Sinton, D.

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

Son, Y.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

Song, J.

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Stephan, O.

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

Stéphan, O.

L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Sugioka, K.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Sun, H.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Sun, H.-B.

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Svane, I. M.

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

Tanaka, T.

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
[Crossref]

Tao, W.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Vitrant, G.

C.-L. Lin, G. Vitrant, M. Bouriau, R. Casalegno, and P. L. Baldeck, “Optically driven Archimedes micro-screws for micropump application,” Opt. Express 19(9), 8267–8276 (2011).
[Crossref] [PubMed]

M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
[Crossref]

L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Vurth, L.

L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Wang, D.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Wang, G.

A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
[Crossref] [PubMed]

Wang, G. Z.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref] [PubMed]

Wang, I.

Wang, L.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Wang, P.

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

Wang, W.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Wang, Y.

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. B Biol. Sci. 368, 20120026 (2013).

Wu, D.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Wu, S.-Z.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Wu, Y.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Xia, H.

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Xu, B.-B.

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Xu, H.

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Xu, J.

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Xu, T.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Xu, Y.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Xu, Z.

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Yang, D.-Y.

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

Yang, Z.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Ye, J.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Zaiba, S.

M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
[Crossref]

Zhang, K.

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Zhang, M.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Zhang, Q.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Zhang, R.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Zhang, W.-J.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Zhang, X.-J.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Zhang, Y.-L.

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Zhao, A.

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

Zhao, B.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Zheng, W.-H.

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

Zhou, Z.

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Zhu, W.

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref] [PubMed]

ACS Nano (1)

Y. Zhao, X.-J. Zhang, J. Ye, L.-M. Chen, S.-P. Lau, W.-J. Zhang, and S.-T. Lee, “Metallo-Dielectric Photonic Crystals for Surface-Enhanced Raman Scattering,” ACS Nano 5(4), 3027–3033 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

H. Liang, Z. Li, W. Wang, Y. Wu, and H. Xu, “Highly Surface-roughened “Flower-like” Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering,” Adv. Mater. 21(45), 4614–4618 (2009).
[Crossref]

Appl. Phys. Lett. (2)

T. Tanaka, A. Ishikawa, and S. Kawata, “Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure,” Appl. Phys. Lett. 88(8), 081107 (2006).
[Crossref]

L. Vurth, P. Baldeck, O. Stéphan, and G. Vitrant, “Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator,” Appl. Phys. Lett. 92(17), 171103 (2008).
[Crossref]

Can. J. Chem. (1)

A. G. Brolo and A. C. Sanderson, “Surface-enhanced Raman scattering (SERS) from a silver electrode modified with oxazine 720,” Can. J. Chem. 82(10), 1474–1480 (2004).
[Crossref]

Chem. Mater. (1)

G. Lu, C. Li, and G. Shi, “Synthesis and Characterization of 3D Dendritic Gold Nanostructures and Their Use as Substrates for Surface-Enhanced Raman Scattering,” Chem. Mater. 19(14), 3433–3440 (2007).
[Crossref]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

J. Mater. Chem. (2)

M. Zhang, A. Zhao, H. Sun, H. Guo, D. Wang, D. Li, Z. Gan, and W. Tao, “Rapid, large-scale, sonochemical synthesis of 3D nanotextured silver microflowers as highly efficient SERS substrates,” J. Mater. Chem. 21(46), 18817–18824 (2011).
[Crossref]

L. He, J. Huang, T. Xu, L. Chen, K. Zhang, S. Han, Y. He, and S. T. Lee, “Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate,” J. Mater. Chem. 22(4), 1370–1374 (2012).
[Crossref]

Lab Chip (7)

B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, and H.-B. Sun, “Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels,” Lab Chip 11(19), 3347–3351 (2011).
[Crossref] [PubMed]

L. Amato, Y. Gu, N. Bellini, S. M. Eaton, G. Cerullo, and R. Osellame, “Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip,” Lab Chip 12(6), 1135–1142 (2012).
[Crossref] [PubMed]

M. H. Olsen, G. M. Hjortø, M. Hansen, Ö. Met, I. M. Svane, and N. B. Larsen, “In-chip fabrication of free-form 3D constructs for directed cell migration analysis,” Lab Chip 13(24), 4800–4809 (2013).
[Crossref] [PubMed]

B.-B. Xu, Y.-L. Zhang, H. Xia, W.-F. Dong, H. Ding, and H.-B. Sun, “Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing,” Lab Chip 13(9), 1677–1690 (2013).
[Crossref] [PubMed]

A. Y. N. Hui, G. Wang, B. Lin, and W.-T. Chan, “Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices,” Lab Chip 5(10), 1173–1177 (2005).
[Crossref] [PubMed]

M. Fan, P. Wang, C. Escobedo, D. Sinton, and A. G. Brolo, “Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720,” Lab Chip 12(8), 1554–1560 (2012).
[Crossref] [PubMed]

T. W. Lim, Y. Son, Y. J. Jeong, D.-Y. Yang, H.-J. Kong, K.-S. Lee, and D.-P. Kim, “Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length,” Lab Chip 11(1), 100–103 (2011).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, and K. Sugioka, “Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip,” Laser Photonics Rev. 8(3), 458–467 (2014).
[Crossref]

Light Sci. Appl. (1)

D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa, and K. Sugioka, “In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting,” Light Sci. Appl. 4(1), e228 (2015).
[Crossref]

Microfluid. Nanofluidics (1)

M. Iosin, T. Scheul, C. Nizak, O. Stephan, S. Astilean, and P. Baldeck, “Laser microstructuration of three-dimensional enzyme reactors in microfluidic channels,” Microfluid. Nanofluidics 10(3), 685–690 (2011).
[Crossref]

Opt. Commun. (2)

M. Giloan, S. Zaiba, G. Vitrant, P. L. Baldeck, and S. Astilean, “Light transmission and local field enhancement in arrays of silver nanocylinders,” Opt. Commun. 284(14), 3629–3634 (2011).
[Crossref]

Z. Zhou, J. Xu, Y. Liao, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of an integrated Raman sensor by selective surface metallization using a femtosecond laser oscillator,” Opt. Commun. 282(7), 1370–1373 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Philos. Trans. R. Soc. B Biol. Sci. (1)

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. B Biol. Sci. 368, 20120026 (2013).

Phys. Chem. Chem. Phys. (1)

X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu, “Nanospheres of silver nanoparticles: agglomeration, surface morphology control and application as SERS substrates,” Phys. Chem. Chem. Phys. 11(34), 7450–7454 (2009).
[Crossref] [PubMed]

Prog. Polym. Sci. (1)

K.-S. Lee, R. H. Kim, D.-Y. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008).
[Crossref]

RSC Advances (1)

C.-F Lin, C.-K. Lin, Y.-J. Liu, C.-H. Chiang, M.-J. Pan, P. P. Baldeck, and C.-L. Lin, “Laser-induced cross-linking GFP-AcmA′ bioprobe for screening Gram-positive bacteria on a biochip,” RSC Advances 4(108), 62882–62887 (2014).
[Crossref]

Sensors (Basel) (1)

F. He, Y. Liao, J. Lin, J. Song, L. Qiao, Y. Cheng, and K. Sugioka, “Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass,” Sensors (Basel) 14(10), 19402–19440 (2014).
[Crossref] [PubMed]

Small (1)

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Other (4)

M. Rumi, S. Barlow, J. Wang, J. W. Perry, and S. R. Marder, “Two-Photon Absorbing Materials and Two-Photon-Induced Chemistry,” in Photoresponsive Polymers I, S. R. Marder and K.-S. Lee, eds., Advances in Polymer Science No. 213 (Springer Berlin Heidelberg, 2008), pp. 1–95.

H.-B. Sun and S. Kawata, “Two-Photon Photopolymerization and 3D Lithographic Microfabrication,” in NMR • 3D Analysis • Photopolymerization, Advances in Polymer Science No. 170 (Springer Berlin Heidelberg, 2004), pp. 169–273.

“Lumerical Solutions, Inc. http://www.lumerical.com/tcad-products/fdtd/

R. C. Weast, CRC Handbook of Chemistry and Physics: 69th Edition (CRC Press Inc., 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

3D schematic representation of the microchannel design.

Fig. 2
Fig. 2

Examples of 3D silver microstructures fabricated with by two-photon reduction with a Nd:YAG Q-switched microlaser at 1064 nm. Optical transmission images of (a) 4x4 array of Ag micro-pillars, (b) 2x2 Ag micro-star array, (c) 3x3 array of Ag micro-cubes and (d) the metallic reflectivity image of 3x3 array of Ag micro-cubes. Scale bar: 20 μm.

Fig. 3
Fig. 3

(a). CAD model of one 3D Ag micro-pillar; (b) Optical transmission image of a 5x5 3D Ag micro-pillars array, and (c) its corresponding metallic reflectivity image; (d) Concentration-dependent SERS spectra of Oxazine 720 dispersed on 3D Ag micro-pillars array. The Oxazine 720 concentration ranges from 10 −4 to 10−8 M. Excitation: 785 nm laser line. The spectrum marked by (i) represents the Raman signal obtained from outside of the 3D Ag micro-pillars.

Fig. 4
Fig. 4

Relative field enhancement ((E/E0)2 distribution in two different planes. (E0 the intensity of electromagnetic field of incident light is considered unity).

Fig. 5
Fig. 5

(a). Optical transmission image of the fabricated 3D Ag micro-cubes array in the microfluidic channel and (b) SERS spectra of Ozaxine 720 solution beside (spectrum i) and on the 3D Ag micro-cubes array (spectrum ii), compared to SERS spectrum on 3D Ag micro-pillar inside microfluidic channel. Excitation: 785 nm laser line.

Metrics