Abstract

Nanoporous gold (NPG) is an advanced functional material with both propagating and localized surface plasmon resonance (PSPR and LSPR) effects. In this work, uniform NPG films with controlled thickness and small pore size were easily prepared by sputtering deposition followed by low-temperature dealloying. Using slab waveguide spectroscopy, the LSPR absorption peak of the NPG film was measured to shift from 566 nm to 586 nm by changing the surrounding refractive index from 1.333 to 1.368. Total internal reflection (TIR) SERS spectra for Rhodamine 6G (R6G) and Nile blue (NB) molecules adsorbed in the NPG film were investigated with a prism coupler. Upon increasing the incident angle (θ) from the critical value, the intensity of the SERS signal excited with the s-polarized laser beam of 532 nm wavelength gradually decreases but with the p-polarized laser beam exhibits a peak at θ ≈53°. The peak intensity is 2 times stronger than that excited with normal incidence of the same laser beam. The PSPR mode of the NPG film can be excited at 785 nm wavelength, which leads to a strong SERS signal of NB. In contrast, the LSPR effect at 785 nm wavelength is too weak to make the SERS signal undetectable with normal incidence. The findings indicate that the TIR geometry can bring about at least a twofold enhancement of SERS sensitivity of NPG film relative to the conventional normal incidence and that the contributions of LSPR and PSPR effects to the SERS sensitivity of NPG film are different at different incident wavelengths.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Direct-write patterning of nanoporous gold microstructures by in situ laser-assisted dealloying

Jingting Li, Fusheng Zhao, and Wei-Chuan Shih
Opt. Express 24(20) 23610-23617 (2016)

Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film

Xiangxian Wang, Xuelin Bai, Zhiyuan Pang, Jiankai Zhu, Yuan Wu, Hua Yang, Yunping Qi, and Xiaolei Wen
Opt. Mater. Express 9(4) 1872-1881 (2019)

Enhancement of two-photon photoluminescence and SERS for low-coverage gold films

Sergey M. Novikov, Jonas Beermann, Christian Frydendahl, Nicolas Stenger, Victor Coello, N. Asger Mortensen, and Sergey I. Bozhevolnyi
Opt. Express 24(15) 16743-16751 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Garoli, G. Ruffato, P. Zilio, E. Calandrini, F. D. Angelis, F. Romanato, and S. Cattarin, “Nanoporous gold leaves: preparation, optical characterization and plasmonic behavior in the visible and mid-infrared spectral regions,” Opt. Mater. Express 5(10), 2246–2256 (2015).
    [Crossref]
  2. S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
    [Crossref]
  3. G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express 19(14), 13164–13170 (2011).
    [Crossref] [PubMed]
  4. F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
    [Crossref] [PubMed]
  5. Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
    [Crossref]
  6. D. Kramer, R. N. Viswanath, and J. Weissmüller, “Surface-stress induced macroscopic bending of nanoporous gold cantilevers,” Nano Lett. 4(5), 793–796 (2004).
    [Crossref]
  7. L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics,” Appl. Phys. Lett. 91(8), 083105 (2007).
    [Crossref]
  8. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
    [Crossref]
  9. X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
    [Crossref]
  10. L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
    [Crossref] [PubMed]
  11. H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
    [PubMed]
  12. Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
    [Crossref] [PubMed]
  13. Z. Zhang, D. F. Lu, and Z. M. Qi, “Surface plasmon resonance sensing properties of nanoporous gold thin films,” Wuli Huaxue Xuebao 29(4), 867–873 (2013).
  14. T. Ikeshoji, Y. Ono, and T. Mizuno, “Total reflection Raman Spectra; Raman scatting due to the evanescent wave in total reflection,” Appl. Opt. 12(10), 2236–2237 (1973).
    [Crossref] [PubMed]
  15. R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
    [Crossref]
  16. Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
    [Crossref] [PubMed]
  17. S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
    [Crossref] [PubMed]
  18. Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
    [Crossref] [PubMed]
  19. X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
    [Crossref]
  20. J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 1311–1318 (2012).
    [Crossref]
  21. Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

2015 (2)

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

D. Garoli, G. Ruffato, P. Zilio, E. Calandrini, F. D. Angelis, F. Romanato, and S. Cattarin, “Nanoporous gold leaves: preparation, optical characterization and plasmonic behavior in the visible and mid-infrared spectral regions,” Opt. Mater. Express 5(10), 2246–2256 (2015).
[Crossref]

2014 (1)

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

2013 (2)

Z. Zhang, D. F. Lu, and Z. M. Qi, “Surface plasmon resonance sensing properties of nanoporous gold thin films,” Wuli Huaxue Xuebao 29(4), 867–873 (2013).

Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
[Crossref]

2012 (1)

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 1311–1318 (2012).
[Crossref]

2011 (6)

G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express 19(14), 13164–13170 (2011).
[Crossref] [PubMed]

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

2009 (2)

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[Crossref] [PubMed]

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

2007 (2)

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

2006 (2)

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

2004 (1)

D. Kramer, R. N. Viswanath, and J. Weissmüller, “Surface-stress induced macroscopic bending of nanoporous gold cantilevers,” Nano Lett. 4(5), 793–796 (2004).
[Crossref]

1981 (1)

R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
[Crossref]

1973 (1)

Ahl, S.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Angelis, F. D.

Biener, J.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

Cai, W. P.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Calandrini, E.

Caminade, A. M.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Cao, S. H.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Cattarin, S.

Chen, C.

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Chen, L. Y.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

Chen, M.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Chen, M. W.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

Ciesielski, P. N.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Erlebacher, J.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Escobar, C. A.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Fujita, T.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

Garoli, D.

Guan, P.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Guan, P. F.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

Hamza, A. V.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

Hayes, J. R.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

Hirata, A.

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Hu, D. B.

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Huo, S. X.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Huser, T.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

Ikeshoji, T.

Inoue, A.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

Inouye, Y.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Iwamoto, R.

R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
[Crossref]

Iwasaki, H.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Jennings, G. K.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Jian, X.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Jiao, Y.

Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
[Crossref]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Knoll, W.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Koktysh, D. S.

Kramer, D.

D. Kramer, R. N. Viswanath, and J. Weissmüller, “Surface-stress induced macroscopic bending of nanoporous gold cantilevers,” Nano Lett. 4(5), 793–796 (2004).
[Crossref]

Kucheyev, S. O.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

Lang, X.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Lang, X. Y.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

Li, H.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Li, Y. Q.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Liu, D. L.

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Liu, H.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Liu, Q.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Lu, D. F.

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Z. Zhang, D. F. Lu, and Z. M. Qi, “Surface plasmon resonance sensing properties of nanoporous gold thin films,” Wuli Huaxue Xuebao 29(4), 867–873 (2013).

Majoral, J. P.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Meng, L. Y.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Mima, S.

R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
[Crossref]

Miya, M.

R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
[Crossref]

Mizuno, T.

Ohta, K.

R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
[Crossref]

Ono, Y.

Qi, Z. M.

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Z. Zhang, D. F. Lu, and Z. M. Qi, “Surface plasmon resonance sensing properties of nanoporous gold thin films,” Wuli Huaxue Xuebao 29(4), 867–873 (2013).

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[Crossref] [PubMed]

Qian, L.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Qian, L. H.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

Ren, B.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Romanato, F.

Ruffato, G.

Ryckman, J. D.

Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
[Crossref]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Talley, C. E.

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

Viswanath, R. N.

D. Kramer, R. N. Viswanath, and J. Weissmüller, “Surface-stress induced macroscopic bending of nanoporous gold cantilevers,” Nano Lett. 4(5), 793–796 (2004).
[Crossref]

Weiss, S. M.

Y. Jiao, J. D. Ryckman, D. S. Koktysh, and S. M. Weiss, “Controlling surface enhanced Raman scattering using grating-type patterned nanoporous gold substrates,” Opt. Mater. Express 3(8), 1137–1148 (2013).
[Crossref]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Weissmüller, J.

D. Kramer, R. N. Viswanath, and J. Weissmüller, “Surface-stress induced macroscopic bending of nanoporous gold cantilevers,” Nano Lett. 4(5), 793–796 (2004).
[Crossref]

Xia, S.

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[Crossref] [PubMed]

Xie, K. X.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Xu, S.

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Xu, W.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 1311–1318 (2012).
[Crossref]

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

Xue, Q.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Yamaguchi, Y.

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Yan, X. Q.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

Yang, Z. L.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Yu, F.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Zhai, Y. Y.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 1311–1318 (2012).
[Crossref]

Zhang, L.

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 1311–1318 (2012).
[Crossref]

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, D. F. Lu, and Z. M. Qi, “Surface plasmon resonance sensing properties of nanoporous gold thin films,” Wuli Huaxue Xuebao 29(4), 867–873 (2013).

Zhao, Q.

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Zi, J.

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Zilio, P.

Zong, C.

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

Zou, H.

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[Crossref] [PubMed]

ACS Nano (1)

L. Zhang, X. Lang, A. Hirata, and M. Chen, “Wrinkled nanoporous gold films with ultrahigh surface-enhanced Raman scattering enhancement,” ACS Nano 5(6), 4407–4413 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem. 78(20), 7346–7350 (2006).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. O. Kucheyev, J. R. Hayes, J. Biener, T. Huser, C. E. Talley, and A. V. Hamza, “Surface-enhanced Raman scattering on nanoporous Au,” Appl. Phys. Lett. 89(5), 053102 (2006).
[Crossref]

L. H. Qian and M. W. Chen, “Ultrafine nanoporous gold by low-temperature dealloying and kinetics,” Appl. Phys. Lett. 91(8), 083105 (2007).
[Crossref]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett. 90(15), 153120 (2007).
[Crossref]

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett. 94(21), 213109 (2009).
[Crossref]

X. Lang, L. Qian, P. Guan, J. Zi, and M. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett. 98(9), 093701 (2011).
[Crossref]

Chem. Commun. (Camb.) (1)

Y. Liu, S. Xu, H. Li, X. Jian, and W. Xu, “Localized and propagating surface plasmon co-enhanced Raman spectroscopy based on evanescent field excitation,” Chem. Commun. (Camb.) 47(13), 3784–3786 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

R. Iwamoto, M. Miya, K. Ohta, and S. Mima, “Total internal reflection Raman spectroscopy,” J. Chem. Phys. 74(9), 4780–4790 (1981).
[Crossref]

J. Phys. Chem. Lett. (1)

S. X. Huo, Q. Liu, S. H. Cao, W. P. Cai, L. Y. Meng, K. X. Xie, Y. Y. Zhai, C. Zong, Z. L. Yang, B. Ren, and Y. Q. Li, “Surface plasmon-coupled directional enhanced Raman scatting by means of the reverse Kretschmann configuration,” J. Phys. Chem. Lett. 6(11), 2015–2019 (2015).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

J. Zhang, L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” J. Phys. D Appl. Phys. 45(11), 1311–1318 (2012).
[Crossref]

Nano Lett. (1)

D. Kramer, R. N. Viswanath, and J. Weissmüller, “Surface-stress induced macroscopic bending of nanoporous gold cantilevers,” Nano Lett. 4(5), 793–796 (2004).
[Crossref]

Nanotechnology (2)

Z. M. Qi, S. Xia, and H. Zou, “Slow spontaneous transformation of the morphology of ultrathin gold films characterized by localized surface plasmon resonance spectroscopy,” Nanotechnology 20(25), 255702 (2009).
[Crossref] [PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology 22(29), 295302 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (2)

Sci. Rep. (1)

H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, and M. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci. Rep. 1(1), 112 (2011).
[PubMed]

Wuli Huaxue Xuebao (2)

Z. Zhang, D. F. Lu, and Z. M. Qi, “Surface plasmon resonance sensing properties of nanoporous gold thin films,” Wuli Huaxue Xuebao 29(4), 867–873 (2013).

Q. Zhao, D. F. Lu, D. L. Liu, C. Chen, D. B. Hu, and Z. M. Qi, “Study of total internal reflection SERS based on self-assembled gold nanoparticle monolayer film,” Wuli Huaxue Xuebao 30(7), 1201–1207 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) SEM image of the NPG film prepared by 1h dealloying at room temperature; (b) and (c) SEM image and EDX spectrum of the NPG film prepared by 24h dealloying at −18°C.
Fig. 2
Fig. 2 Schematic diagram of the optical waveguide spectroscopy setup for measurement of LSPR absorption spectra of the NPG film.
Fig. 3
Fig. 3 (a) LSPR absorption spectra of the NPG film covered with aqueous NaCl solution of different concentrations; (b) Linear dependence of the peak wavelength on refractive index of the bulk solution.
Fig. 4
Fig. 4 Schematic diagram of the experimental setup for TIR-SERS measurement with the NPG film.
Fig. 5
Fig. 5 Raman signals excited by (a) s-polarized and (c) p-polarized evanescent field at different incident angles; (b) s-polarized electric field enhancement at glass/NPG interface (black line) and the Raman intensity of 614cm−1 from R6G (blue dots); (d) p-polarized electric field enhancement (red line represents for the x-component and black line represents for the z-component) at glass/NPG interface and the Raman intensity of 614cm−1 from R6G (blue dots).
Fig. 6
Fig. 6 TIR-SERS spectrum for R6G molecules adsorbed in the NPG film (the spectrum excited by normal incidence was also shown for comparison)
Fig. 7
Fig. 7 (a) SERS spectra excited at different TIR angles using the p-polarized laser beam of 785 nm wavelength (the PSPR mode was excited at 40° TIR angle, making the SERS signal stronger); (b) Comparison between the PSPR-excited SERS signal and that excited with a free-space laser beam of same wavelength and equal power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = log [ I S ( λ ) I D ( λ ) I R ( λ ) I D ( λ ) ]

Metrics