Abstract

A specimen-grating fabrication technique based on solute-solvent separation soft lithography (3S soft lithography) is reported. Both transfer and zero-thickness gratings can be fabricated using this approach. A two-layer hybrid polydimethylsiloxane (PDMS) stamp is designed to increase the stamp in-plane stiffness without degrading the off-plane flexibility. The frequency uniformity, micromorphology, thickness, and shear lag of each fabricated grating is characterized. The application ranges of the fabricated transfer and zero-thickness gratings are determined via experiments. As examples of typical applications, the fabricated gratings are used in moiré interferometry and scanning moiré experiments to determine the residual stress and crack opening displacement.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deformation grating fabrication technique based on the solvent-assisted microcontact molding

Xianglu Dai, Huimin Xie, and Huaixi Wang
Appl. Opt. 53(30) 7037-7044 (2014)

Study of moiré grating fabrication on metal samples using nanoimprint lithography

Minjin Tang, Huimin Xie, Jianguo Zhu, Xiaojun Li, and Yanjie Li
Opt. Express 20(3) 2942-2955 (2012)

Polymeric waveguide Bragg grating filter using soft lithography

Askin Kocabas and Atilla Aydinli
Opt. Express 14(22) 10228-10232 (2006)

References

  • View by:
  • |
  • |
  • |

  1. A. Durelli and V. Parks, Moiré Analysis Of Strain (Prentice Hall, 1970).
  2. D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer, 1994).
  3. S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
    [Crossref]
  4. H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
    [Crossref]
  5. R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
    [Crossref]
  6. G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31(3), 252–256 (1991).
    [Crossref]
  7. B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packag. 117(3), 185–191 (1995).
    [Crossref]
  8. B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
    [Crossref]
  9. X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
    [Crossref]
  10. M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
    [Crossref]
  11. Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
    [Crossref]
  12. H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).
  13. Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
    [Crossref] [PubMed]
  14. C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
    [Crossref] [PubMed]
  15. D. Post, J. McKelvie, M. Tu, and F. L. Dai, “Fabrication of holographic gratings using a moving point source,” Appl. Opt. 28(16), 3494–3497 (1989).
    [Crossref] [PubMed]
  16. H. Xie, S. Kishimoto, and N. Shinya, “Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques,” Opt. Laser Technol. 32(5), 361–367 (2000).
    [Crossref]
  17. Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
    [Crossref]
  18. M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20(3), 2942–2955 (2012).
    [Crossref] [PubMed]
  19. X. Dai, H. Xie, and H. Wang, “Deformation grating fabrication technique based on the solvent-assisted microcontact molding,” Appl. Opt. 53(30), 7037–7044 (2014).
    [Crossref] [PubMed]
  20. X. Dai and H. Xie, “A simple and residual-layer-free solute–solvent separation soft lithography method,” J. Micromech. Microeng. 25(9), 095013 (2015).
    [Crossref]
  21. H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
    [Crossref]
  22. M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
    [Crossref]
  23. X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
    [Crossref]
  24. G. Schajer, “Relaxation methods for measuring residual stresses: techniques and opportunities,” Exp. Mech. 50(8), 1117–1127 (2010).
    [Crossref]
  25. N. Rendler and I. Vigness, “Hole-drilling strain-gage method of measuring residual stresses,” Exp. Mech. 6(12), 577–586 (1966).
    [Crossref]
  26. Z. Wu, J. Lu, and B. Han, “Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory,” J. Appl. Mech. 65(4), 837–843 (1998).
    [Crossref]
  27. G. Schajer, “Measurement of non-uniform residual stresses using the hole-drilling method. Part I—Stress calculation procedures,” ASME. J. Eng. Mater. Technol. 110(4), 338–343 (1988).
    [Crossref]

2016 (1)

X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
[Crossref]

2015 (1)

X. Dai and H. Xie, “A simple and residual-layer-free solute–solvent separation soft lithography method,” J. Micromech. Microeng. 25(9), 095013 (2015).
[Crossref]

2014 (4)

C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
[Crossref] [PubMed]

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

X. Dai, H. Xie, and H. Wang, “Deformation grating fabrication technique based on the solvent-assisted microcontact molding,” Appl. Opt. 53(30), 7037–7044 (2014).
[Crossref] [PubMed]

2013 (2)

M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
[Crossref]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20(3), 2942–2955 (2012).
[Crossref] [PubMed]

2010 (2)

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

G. Schajer, “Relaxation methods for measuring residual stresses: techniques and opportunities,” Exp. Mech. 50(8), 1117–1127 (2010).
[Crossref]

2007 (1)

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

2004 (1)

X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
[Crossref]

2002 (1)

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

2000 (2)

H. Xie, S. Kishimoto, and N. Shinya, “Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques,” Opt. Laser Technol. 32(5), 361–367 (2000).
[Crossref]

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

1999 (1)

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

1998 (1)

Z. Wu, J. Lu, and B. Han, “Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory,” J. Appl. Mech. 65(4), 837–843 (1998).
[Crossref]

1995 (1)

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packag. 117(3), 185–191 (1995).
[Crossref]

1993 (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[Crossref]

1991 (1)

G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31(3), 252–256 (1991).
[Crossref]

1989 (1)

1988 (1)

G. Schajer, “Measurement of non-uniform residual stresses using the hole-drilling method. Part I—Stress calculation procedures,” ASME. J. Eng. Mater. Technol. 110(4), 338–343 (1988).
[Crossref]

1966 (1)

N. Rendler and I. Vigness, “Hole-drilling strain-gage method of measuring residual stresses,” Exp. Mech. 6(12), 577–586 (1966).
[Crossref]

Barbero, E.

X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
[Crossref]

Beyne, E.

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

Borzenko, T.

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

Carpenter, W.

X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
[Crossref]

Che, Z.

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

Dai, F.

X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
[Crossref]

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

Dai, F. L.

Dai, X.

X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
[Crossref]

X. Dai and H. Xie, “A simple and residual-layer-free solute–solvent separation soft lithography method,” J. Micromech. Microeng. 25(9), 095013 (2015).
[Crossref]

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

X. Dai, H. Xie, and H. Wang, “Deformation grating fabrication technique based on the solvent-assisted microcontact molding,” Appl. Opt. 53(30), 7037–7044 (2014).
[Crossref] [PubMed]

Dietz, P.

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

Egashira, M.

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[Crossref]

Fang, P.

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

Gonzalez, M.

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

Gu, C.

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

Gu, C. Z.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

Guo, B. Q.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

Guo, Y.

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packag. 117(3), 185–191 (1995).
[Crossref]

Han, B.

Z. Wu, J. Lu, and B. Han, “Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory,” J. Appl. Mech. 65(4), 837–843 (1998).
[Crossref]

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packag. 117(3), 185–191 (1995).
[Crossref]

Jiang, X.

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
[Crossref] [PubMed]

Kang, B.

X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
[Crossref]

Kishimoto, S.

X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
[Crossref]

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
[Crossref] [PubMed]

H. Xie, S. Kishimoto, and N. Shinya, “Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques,” Opt. Laser Technol. 32(5), 361–367 (2000).
[Crossref]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[Crossref]

Li, C.

C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
[Crossref] [PubMed]

Li, X.

Li, Y.

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20(3), 2942–2955 (2012).
[Crossref] [PubMed]

Li, Y. J.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

Limaye, P.

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

Liu, X.

X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
[Crossref]

Liu, Z.

C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
[Crossref] [PubMed]

Lu, J.

Z. Wu, J. Lu, and B. Han, “Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory,” J. Appl. Mech. 65(4), 837–843 (1998).
[Crossref]

Luo, Q.

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

McKelvie, J.

Michel, B.

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

Molenkamp, L. W.

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

Nicoletto, G.

G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31(3), 252–256 (1991).
[Crossref]

Post, D.

Ratchev, P.

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

Rendler, N.

N. Rendler and I. Vigness, “Hole-drilling strain-gage method of measuring residual stresses,” Exp. Mech. 6(12), 577–586 (1966).
[Crossref]

Schajer, G.

G. Schajer, “Relaxation methods for measuring residual stresses: techniques and opportunities,” Exp. Mech. 50(8), 1117–1127 (2010).
[Crossref]

G. Schajer, “Measurement of non-uniform residual stresses using the hole-drilling method. Part I—Stress calculation procedures,” ASME. J. Eng. Mater. Technol. 110(4), 338–343 (1988).
[Crossref]

Schmid, H.

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

Schmidt, A.

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

Schmidt, G.

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

Shinya, N.

H. Xie, S. Kishimoto, and N. Shinya, “Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques,” Opt. Laser Technol. 32(5), 361–367 (2000).
[Crossref]

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[Crossref]

Steffen, B.

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

Tang, M.

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
[Crossref]

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20(3), 2942–2955 (2012).
[Crossref] [PubMed]

Tormen, M.

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

Tu, M.

Vandevelde, B.

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

Vigness, I.

N. Rendler and I. Vigness, “Hole-drilling strain-gage method of measuring residual stresses,” Exp. Mech. 6(12), 577–586 (1966).
[Crossref]

Wang, H.

X. Dai, H. Xie, and H. Wang, “Deformation grating fabrication technique based on the solvent-assisted microcontact molding,” Appl. Opt. 53(30), 7037–7044 (2014).
[Crossref] [PubMed]

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

Wang, Q.

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
[Crossref] [PubMed]

Wei, Z.

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

Wu, D.

C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
[Crossref] [PubMed]

M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
[Crossref]

Wu, L.

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

Wu, Z.

Z. Wu, J. Lu, and B. Han, “Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory,” J. Appl. Mech. 65(4), 837–843 (1998).
[Crossref]

Xie, H.

X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
[Crossref]

X. Dai and H. Xie, “A simple and residual-layer-free solute–solvent separation soft lithography method,” J. Micromech. Microeng. 25(9), 095013 (2015).
[Crossref]

C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
[Crossref] [PubMed]

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

X. Dai, H. Xie, and H. Wang, “Deformation grating fabrication technique based on the solvent-assisted microcontact molding,” Appl. Opt. 53(30), 7037–7044 (2014).
[Crossref] [PubMed]

M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
[Crossref]

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20(3), 2942–2955 (2012).
[Crossref] [PubMed]

H. Xie, S. Kishimoto, and N. Shinya, “Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques,” Opt. Laser Technol. 32(5), 361–367 (2000).
[Crossref]

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

Xie, H. M.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

Xu, M. Q.

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

Yamauchi, Y.

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
[Crossref] [PubMed]

Zhu, J.

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
[Crossref]

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

M. Tang, H. Xie, J. Zhu, X. Li, and Y. Li, “Study of moiré grating fabrication on metal samples using nanoimprint lithography,” Opt. Express 20(3), 2942–2955 (2012).
[Crossref] [PubMed]

Zhu, R.

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

Zou, S.

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Tormen, T. Borzenko, B. Steffen, G. Schmidt, and L. W. Molenkamp, “Using ultrathin elastomeric stamps to reduce pattern distortion in microcontact printing,” Appl. Phys. Lett. 81(11), 2094–2096 (2002).
[Crossref]

X. Dai, H. Xie, F. Dai, and S. Kishimoto, “Characterizing macroscopic lateral distortion in nanoimprint lithography using moiré interferometry,” Appl. Phys. Lett. 108(5), 053109 (2016).
[Crossref]

ASME. J. Eng. Mater. Technol. (1)

G. Schajer, “Measurement of non-uniform residual stresses using the hole-drilling method. Part I—Stress calculation procedures,” ASME. J. Eng. Mater. Technol. 110(4), 338–343 (1988).
[Crossref]

Exp. Mech. (3)

G. Schajer, “Relaxation methods for measuring residual stresses: techniques and opportunities,” Exp. Mech. 50(8), 1117–1127 (2010).
[Crossref]

N. Rendler and I. Vigness, “Hole-drilling strain-gage method of measuring residual stresses,” Exp. Mech. 6(12), 577–586 (1966).
[Crossref]

G. Nicoletto, “Moiré interferometry determination of residual stresses in the presence of gradients,” Exp. Mech. 31(3), 252–256 (1991).
[Crossref]

J. Appl. Mech. (1)

Z. Wu, J. Lu, and B. Han, “Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, Part I: Theory,” J. Appl. Mech. 65(4), 837–843 (1998).
[Crossref]

J. Electron. Packag. (1)

B. Han and Y. Guo, “Thermal deformation analysis of various electronic packaging products by moiré and microscopic moiré interferometry,” J. Electron. Packag. 117(3), 185–191 (1995).
[Crossref]

J. Mater. Process. Technol. (1)

H. Xie, F. Dai, P. Dietz, A. Schmidt, and Z. Wei, “600°C creep analysis of metals using the Moiré interferometry method,” J. Mater. Process. Technol. 88(1), 185–189 (1999).

J. Mater. Sci. (1)

X. Liu, B. Kang, W. Carpenter, and E. Barbero, “Investigation of the crack growth behavior of Inconel 718 by high temperature Moire interferometry,” J. Mater. Sci. 39(6), 1967–1973 (2004).
[Crossref]

J. Micromech. Microeng. (2)

X. Dai and H. Xie, “A simple and residual-layer-free solute–solvent separation soft lithography method,” J. Micromech. Microeng. 25(9), 095013 (2015).
[Crossref]

Y. J. Li, H. M. Xie, B. Q. Guo, Q. Luo, C. Z. Gu, and M. Q. Xu, “Fabrication of high-frequency moiré gratings for microscopic deformation measurement using focused ion beam milling,” J. Micromech. Microeng. 20(5), 055037 (2010).
[Crossref]

Macromolecules (1)

H. Schmid and B. Michel, “Siloxane polymers for high-resolution, high-accuracy soft lithography,” Macromolecules 33(8), 3042–3049 (2000).
[Crossref]

Mater. Sci. Eng. A (1)

M. Tang, H. Xie, J. Zhu, and D. Wu, “The failure mechanisms of TBC structure by moire interferometry,” Mater. Sci. Eng. A 565, 142–147 (2013).
[Crossref]

Microelectron. Reliab. (1)

B. Vandevelde, M. Gonzalez, P. Limaye, P. Ratchev, and E. Beyne, “Thermal cycling reliability of SnAgCu and SnPb solder joints: a comparison for several IC-packages,” Microelectron. Reliab. 47(2-3), 259–265 (2007).
[Crossref]

Nanoscale (2)

Q. Wang, S. Kishimoto, X. Jiang, and Y. Yamauchi, “Formation of secondary Moiré patterns for characterization of nanoporous alumina structures in multiple domains with different orientations,” Nanoscale 5(6), 2285–2289 (2013).
[Crossref] [PubMed]

C. Li, Z. Liu, H. Xie, and D. Wu, “Statistics-based electron Moiré technique: a novel method applied to the characterization of mesoporous structures,” Nanoscale 6(22), 13409–13415 (2014).
[Crossref] [PubMed]

Opt. Eng. (1)

S. Kishimoto, M. Egashira, and N. Shinya, “Microcreep deformation measurements by a moiré method using electron beam lithography and electron beam scan,” Opt. Eng. 32(3), 522–526 (1993).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

H. Xie, S. Kishimoto, and N. Shinya, “Fabrication of high-frequency electron beam moire grating using multi-deposited layer techniques,” Opt. Laser Technol. 32(5), 361–367 (2000).
[Crossref]

Opt. Lasers Eng. (2)

H. Wang, H. Xie, Y. Li, P. Fang, X. Dai, L. Wu, and M. Tang, “Fabrication of high temperature moiré grating and its application,” Opt. Lasers Eng. 54, 255–262 (2014).
[Crossref]

Y. Li, H. Xie, M. Tang, J. Zhu, Q. Luo, and C. Gu, “The study on microscopic mechanical property of polycrystalline with SEM moiré method,” Opt. Lasers Eng. 50(12), 1757–1764 (2012).
[Crossref]

Sci. China Phys. Mech. (1)

R. Zhu, H. Xie, J. Zhu, Y. Li, Z. Che, and S. Zou, “A micro-scale strain rosette for residual stress measurement by SEM Moiré method,” Sci. China Phys. Mech. 57(4), 716–722 (2014).
[Crossref]

Other (2)

A. Durelli and V. Parks, Moiré Analysis Of Strain (Prentice Hall, 1970).

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1 Principles of 3S soft lithography.
Fig. 2
Fig. 2 Schematic diagram of two-layer hybrid PDMS stamp-fabrication process.
Fig. 3
Fig. 3 In-plane distortion characterization results for hybrid PDMS stamps with different PDMS layer thicknesses. (a) Location of characterization region A. Fringe patterns of stamps with (b) 153-μm, (c) 1-mm, and (d) 2-mm PDMS layer thicknesses. The numbers in Figs. 3(b)-3(d) indicate the widths of distortion regions, and the unit of scale is millimeter.
Fig. 4
Fig. 4 Schematic diagram of grating fabricated via 3S soft lithography procedure. (a) Grating fabrication process on specimen/glass surface (zero-thickness grating). (b) Transfer of grating onto specimen surface (transfer grating).
Fig. 5
Fig. 5 Schematic diagram of three characterization regions M, B, and C on fabricated grating. The unit of scale is millimeter.
Fig. 6
Fig. 6 Fringe-pattern characterization results. (a), (b), and (c) are the fringe patterns of the master mold corresponding to the M, B, and C regions in Fig. 5.(d), (e), and (f) are the fringe patterns of the fabricated grating corresponding to the M, B, and C regions in Fig. 5. The numbers in Figs. 6(e) and 6(f) indicate the widths of distortion regions, and the unit of scale is millimeter.
Fig. 7
Fig. 7 SEM images of gratings with 1200-line/mm frequency. (a) Zero-thickness grating and (b) transfer grating.
Fig. 8
Fig. 8 Transfer-grating cross section.
Fig. 9
Fig. 9 Zero-thickness-grating cross section.
Fig. 10
Fig. 10 Schematic diagram showing indentation locations (U and S) on nickel base alloy.
Fig. 11
Fig. 11 SEM moiré analysis of the region to the right of indentation U (test region, Fig. 10). Specimens with (a) zero-thickness grating and (b) transfer grating.
Fig. 12
Fig. 12 SEM image of region above indentation S (test region, Fig. 10) on specimen with transfer grating. (a) Overview of S, (b) micrograph of epoxy and nickel base alloy interface.
Fig. 13
Fig. 13 Schematic of moiré interferometry setup and principles.
Fig. 14
Fig. 14 Residual stress test results. (a) Surface of specimen with grating and small hole, (b) SEM image of crossing grating with 1200-line/mm frequency, (c) fringe pattern around hole, (d) displacement field around hole.
Fig. 15
Fig. 15 Schematic diagram of SEM moiré method.
Fig. 16
Fig. 16 Schematic diagram of COD calculation method using moiré fringes.
Fig. 17
Fig. 17 SEM image of microcrack and grating on steel tensile specimen.
Fig. 18
Fig. 18 Fringe patterns in area surrounding crack tip before and after loading.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

sin α = λ f s ,
u = N x 2 f s , v = N y 2 f s ,
ε x = 1 2 f s N x x , ε y = 1 2 f s N y y , γ x y = 1 4 f s ( N x y + N y x ) ,
f = n L .
u = N x f , v = N y f ,
ε x = 1 f N x x , ε y = 1 f N y y , γ x y = 1 2 f s ( N x y + N y x ) .

Metrics