Abstract

In this study, we aimed to create the nano-micro hierarchical surface structures on Ni and analyze their optical second harmonic generation (SHG) response. The hierarchical surface structures were found to significantly modify the optical nonlinearity of the metal surface. The macroscopic symmetry of the surface’s shape influenced SHG, and the excitation of surface plasmon (SP) enhanced SHG. On the other hand, the nanostructures on the micro-cubes had an additional effect on the generated SHG. The mechanism of anisotropic SHG enhancement by the nano-micro structures has been investigated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical second harmonic generation from nanostructured graphene: a full wave approach

Bruno Majérus, Jérémy Butet, Gabriel D. Bernasconi, Raziman Thottungal Valapu, Michaël Lobet, Luc Henrard, and Oliver J. F. Martin
Opt. Express 25(22) 27015-27027 (2017)

Optical characterisation of plasmonic nanostructures on planar substrates using second–harmonic generation

Lina Persechini, Ruggero Verre, Christopher M. Smith, Karsten Fleischer, Igor V. Shvets, Mukesh Ranjan, Stefan Facsko, and John F. McGilp
Opt. Express 23(20) 26486-26498 (2015)

Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by aggregates of silver nanostructures

Laura Sánchez-García, Christos Tserkezis, Mariola O Ramírez, Pablo Molina, Joan J. Carvajal, Magdalena Aguiló, Francesc Díaz, Javier Aizpurua, and Luisa E. Bausá
Opt. Express 24(8) 8491-8500 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic, 2008).
  2. M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  3. Y. Ogata and G. Mizutani, “Control of Cross-Sections and Optical Nonlinearity of Pt Nanowires and the Roughness Effect,” Phys. Res. Int. 2012, 969835 (2012).
    [Crossref]
  4. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008).
    [Crossref] [PubMed]
  5. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
    [Crossref]
  6. K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
    [Crossref] [PubMed]
  7. Y. R. Shen, The Principles of Nonlinear Optics (J. Wiley & Sons, 1984).
  8. V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
    [Crossref] [PubMed]
  9. B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
    [Crossref] [PubMed]
  10. M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
    [Crossref] [PubMed]
  11. A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, and L. Dal Negro, “Multipolar second harmonic generation from planar arrays of Au nanoparticles,” Opt. Express 20(14), 15797–15806 (2012).
    [Crossref] [PubMed]
  12. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
    [Crossref]
  13. A. C. R. Pipino, G. C. Schatz, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement,” Phys. Rev. B Condens. Matter 53(7), 4162–4169 (1996).
    [Crossref] [PubMed]
  14. G. A. Farias and A. A. Maradudin, “Second-harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30(6), 3002–3015 (1984).
    [Crossref]
  15. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
    [Crossref] [PubMed]
  16. A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process. 86(3), 321–324 (2007).
    [Crossref]
  17. A. Y. Vorobyev, V. S. Markin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
    [Crossref]
  18. T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
    [Crossref]
  19. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  20. G. F. Walsh and L. Dal Negro, “Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-Type Coupling in Nanoplasmonic Arrays,” Nano Lett. 13(7), 3111–3117 (2013).
    [Crossref] [PubMed]
  21. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
    [Crossref] [PubMed]
  22. M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
    [Crossref]
  23. N. Gomopoulos, C. Lütgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Express 21(1), 815–821 (2013).
    [Crossref] [PubMed]
  24. V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
    [Crossref]
  25. Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
    [Crossref]
  26. Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
    [Crossref]
  27. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [Crossref] [PubMed]
  28. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
    [Crossref]
  29. S. Toroghi and P. G. Kik, “Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit,” Appl. Phys. Lett. 100(18), 183105 (2012).
    [Crossref]
  30. F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
    [Crossref]
  31. T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
    [Crossref]
  32. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
    [Crossref]
  33. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
    [Crossref]
  34. M. I. Stockman, “Giant fluctuations of second harmonic generation on nanostructured surfaces,” Chem. Phys. 318(1-2), 156–162 (2005).
    [Crossref]

2014 (1)

B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
[Crossref] [PubMed]

2013 (2)

G. F. Walsh and L. Dal Negro, “Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-Type Coupling in Nanoplasmonic Arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

N. Gomopoulos, C. Lütgebaucks, Q. Sun, C. Macias-Romero, and S. Roke, “Label-free second harmonic and hyper Rayleigh scattering with high efficiency,” Opt. Express 21(1), 815–821 (2013).
[Crossref] [PubMed]

2012 (5)

A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, and L. Dal Negro, “Multipolar second harmonic generation from planar arrays of Au nanoparticles,” Opt. Express 20(14), 15797–15806 (2012).
[Crossref] [PubMed]

V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
[Crossref] [PubMed]

S. Toroghi and P. G. Kik, “Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit,” Appl. Phys. Lett. 100(18), 183105 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Y. Ogata and G. Mizutani, “Control of Cross-Sections and Optical Nonlinearity of Pt Nanowires and the Roughness Effect,” Phys. Res. Int. 2012, 969835 (2012).
[Crossref]

2011 (3)

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
[Crossref]

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

2010 (1)

Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
[Crossref]

2009 (4)

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

K. J. Lee, F. Parmigiani, S. Liu, J. Kakande, P. Petropoulos, K. Gallo, and D. Richardson, “Phase sensitive amplification based on quadratic cascading in a periodically poled lithium niobate waveguide,” Opt. Express 17(22), 20393–20400 (2009).
[Crossref] [PubMed]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (4)

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process. 86(3), 321–324 (2007).
[Crossref]

A. Y. Vorobyev, V. S. Markin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

2006 (1)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

2005 (1)

M. I. Stockman, “Giant fluctuations of second harmonic generation on nanostructured surfaces,” Chem. Phys. 318(1-2), 156–162 (2005).
[Crossref]

2004 (1)

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

2003 (1)

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
[Crossref]

2002 (1)

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

1999 (2)

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[Crossref]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[Crossref]

1996 (1)

A. C. R. Pipino, G. C. Schatz, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement,” Phys. Rev. B Condens. Matter 53(7), 4162–4169 (1996).
[Crossref] [PubMed]

1984 (1)

G. A. Farias and A. A. Maradudin, “Second-harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30(6), 3002–3015 (1984).
[Crossref]

1983 (1)

Adam, P.-M.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Agarwal, R.

B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
[Crossref] [PubMed]

Ahorinta, R.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Aktsipetrov, O. A.

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Albers, W. M.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Alexander, R. W.

Ameloot, M.

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Anceau, C.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Aspetti, C. O.

B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
[Crossref] [PubMed]

Aussenegg, F. R.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[Crossref]

Bachelot, R.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bergman, D. J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Billot, L.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Biris, C. G.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

Brasselet, S.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Capretti, A.

Cheng, Y.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Cho, C.-H.

B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
[Crossref] [PubMed]

Clereq, B. D.

Dadap, J. I.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[Crossref]

Dal Negro, L.

G. F. Walsh and L. Dal Negro, “Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-Type Coupling in Nanoplasmonic Arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, and L. Dal Negro, “Multipolar second harmonic generation from planar arrays of Au nanoparticles,” Opt. Express 20(14), 15797–15806 (2012).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

De Clercq, B.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Dorkenoo, K. D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Eisenthal, K. B.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[Crossref]

Farias, G. A.

G. A. Farias and A. A. Maradudin, “Second-harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30(6), 3002–3015 (1984).
[Crossref]

Forestiere, C.

Fort, A.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Gallo, K.

Gillijns, W.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Gindre, D.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Gomopoulos, N.

Gopinath, A.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

Gordon, R.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

Grand, J.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Guo, C.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process. 86(3), 321–324 (2007).
[Crossref]

A. Y. Vorobyev, V. S. Markin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Heinz, T. F.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[Crossref]

Huang, M.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Hubert, C.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Hwang, T. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

Jeyaram, Y.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Jia, T. Q.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Johnson, J. C.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Kakande, J.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Kik, P. G.

S. Toroghi and P. G. Kik, “Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit,” Appl. Phys. Lett. 100(18), 183105 (2012).
[Crossref]

Kitahara, T.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
[Crossref]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[Crossref]

Lee, K. J.

Leitner, A.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[Crossref]

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

Lipson, M.

Liu, S.

Long, L. L.

Lütgebaucks, C.

Macias-Romero, C.

Maradudin, A. A.

G. A. Farias and A. A. Maradudin, “Second-harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30(6), 3002–3015 (1984).
[Crossref]

Markin, V. S.

A. Y. Vorobyev, V. S. Markin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Miano, G.

Minissale, S.

Miyauchi, Y.

Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
[Crossref]

Mizutani, G.

Y. Ogata and G. Mizutani, “Control of Cross-Sections and Optical Nonlinearity of Pt Nanowires and the Roughness Effect,” Phys. Res. Int. 2012, 969835 (2012).
[Crossref]

Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
[Crossref]

Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
[Crossref]

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
[Crossref]

Moshchalkov, V. V.

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Ogata, Y.

Y. Ogata and G. Mizutani, “Control of Cross-Sections and Optical Nonlinearity of Pt Nanowires and the Roughness Effect,” Phys. Res. Int. 2012, 969835 (2012).
[Crossref]

Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
[Crossref]

Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
[Crossref]

Ordal, M. A.

Paddubrouskaya, H.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Panoiu, N. C.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

Parmigiani, F.

Petersen, P. B.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Petropoulos, P.

Piccione, B.

B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
[Crossref] [PubMed]

Pipino, A. C. R.

A. C. R. Pipino, G. C. Schatz, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement,” Phys. Rev. B Condens. Matter 53(7), 4162–4169 (1996).
[Crossref] [PubMed]

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

Richardson, D.

Rodriguez, F. J.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Roke, S.

Royer, P.

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Sano, H.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
[Crossref]

Saykally, R. J.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Schaller, R. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Schatz, G. C.

A. C. R. Pipino, G. C. Schatz, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement,” Phys. Rev. B Condens. Matter 53(7), 4162–4169 (1996).
[Crossref] [PubMed]

A. C. R. Pipino, G. C. Schatz, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement,” Phys. Rev. B Condens. Matter 53(7), 4162–4169 (1996).
[Crossref] [PubMed]

Shan, J.

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[Crossref]

Sihanek, A. V.

Silhanek, A. V.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Sipe, J. E.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Stockman, M. I.

M. I. Stockman, “Giant fluctuations of second harmonic generation on nanostructured surfaces,” Chem. Phys. 318(1-2), 156–162 (2005).
[Crossref]

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

Sugawara, A.

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
[Crossref]

Sun, Q.

Takase, S.

Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
[Crossref]

Toroghi, S.

S. Toroghi and P. G. Kik, “Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit,” Appl. Phys. Lett. 100(18), 183105 (2012).
[Crossref]

Trevino, J.

Tuan, N. A.

Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
[Crossref]

Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
[Crossref]

Turner, A. C.

Valev, V. K.

V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
[Crossref] [PubMed]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

V. K. Valev, X. Zheng, C. G. Biris, A. V. Sihanek, V. Volskiy, B. D. Clereq, O. A. Aktsipetrov, M. Ameloot, N. C. Panoiu, G. A. E. Vandenbosch, and V. V. Moshchalkov, “The origin of second harmonic generation hotspots in chiral optical metamaterials,” Opt. Mater. Express 1(1), 36 (2011).
[Crossref]

Vandenbosch, G. A. E.

Verbiest, T.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Volodin, A.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Volskiy, V.

Vorobyev, A. Y.

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

A. Y. Vorobyev, V. S. Markin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process. 86(3), 321–324 (2007).
[Crossref]

Walsh, G. F.

G. F. Walsh and L. Dal Negro, “Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-Type Coupling in Nanoplasmonic Arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

A. Capretti, G. F. Walsh, S. Minissale, J. Trevino, C. Forestiere, G. Miano, and L. Dal Negro, “Multipolar second harmonic generation from planar arrays of Au nanoparticles,” Opt. Express 20(14), 15797–15806 (2012).
[Crossref] [PubMed]

Wang, F. X.

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Ward, C. A.

Xu, N. S.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Xu, Z. Z.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Yan, H.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Yang, P.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhao, F. L.

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Zheng, X.

Ziegler, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

Zyss, J.

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

ACS Nano (1)

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5(1), 91–96 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B 68(3), 419–423 (1999).
[Crossref]

Appl. Phys. Lett. (3)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale doublehole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

S. Toroghi and P. G. Kik, “Cascaded plasmon resonant field enhancement in nanoparticle dimers in the point dipole limit,” Appl. Phys. Lett. 100(18), 183105 (2012).
[Crossref]

C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90(18), 181105 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Y. Vorobyev and C. Guo, “Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals,” Appl. Phys., A Mater. Sci. Process. 86(3), 321–324 (2007).
[Crossref]

Appl. Surf. Sci. (1)

T. Kitahara, A. Sugawara, H. Sano, and G. Mizutani, “Anisotropic optical second-harmonic generation from the Au nanowire array on the NaCl(1 1 0) template,” Appl. Surf. Sci. 219(3–4), 271–275 (2003).
[Crossref]

Chem. Phys. (1)

M. I. Stockman, “Giant fluctuations of second harmonic generation on nanostructured surfaces,” Chem. Phys. 318(1-2), 156–162 (2005).
[Crossref]

J. Appl. Phys. (2)

Y. Ogata, N. A. Tuan, Y. Miyauchi, and G. Mizutani, “Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes,” J. Appl. Phys. 110(4), 044301 (2011).
[Crossref]

A. Y. Vorobyev, V. S. Markin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys. 101(3), 034903 (2007).
[Crossref]

Langmuir (1)

V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir 28(44), 15454–15471 (2012).
[Crossref] [PubMed]

Nano Lett. (3)

G. F. Walsh and L. Dal Negro, “Enhanced Second Harmonic Generation by Photonic-Plasmonic Fano-Type Coupling in Nanoplasmonic Arrays,” Nano Lett. 13(7), 3111–3117 (2013).
[Crossref] [PubMed]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-Field Imaging of Nonlinear Optical Mixing in Single Zinc Oxide Nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Nanotechnology (1)

M. Huang, F. L. Zhao, T. Q. Jia, Y. Cheng, N. S. Xu, and Z. Z. Xu, “A uniform 290 nm periodic square structures on ZnO fabricated by two-beam femtrosecond laser ablation,” Nanotechnology 18(50), 505301 (2007).
[Crossref]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear Plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Res. Int. (1)

Y. Ogata and G. Mizutani, “Control of Cross-Sections and Optical Nonlinearity of Pt Nanowires and the Roughness Effect,” Phys. Res. Int. 2012, 969835 (2012).
[Crossref]

Phys. Rev. B (3)

G. A. Farias and A. A. Maradudin, “Second-harmonic generation in reflection from a metallic grating,” Phys. Rev. B 30(6), 3002–3015 (1984).
[Crossref]

T. Y. Hwang, A. Y. Vorobyev, and C. Guo, “Surface-plasmon-enhanced photoelectron emission from nanostructure-covered periodic grooves on metals,” Phys. Rev. B 79(8), 085425 (2009).
[Crossref]

F. X. Wang, F. J. Rodriguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80(23), 233402 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. C. R. Pipino, G. C. Schatz, and G. C. Schatz, “Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement,” Phys. Rev. B Condens. Matter 53(7), 4162–4169 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

M. I. Stockman, D. J. Bergman, C. Anceau, S. Brasselet, and J. Zyss, “Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations,” Phys. Rev. Lett. 92(5), 057402 (2004).
[Crossref] [PubMed]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83(20), 4045–4048 (1999).
[Crossref]

Rep. Prog. Phys. (1)

B. Piccione, C. O. Aspetti, C.-H. Cho, and R. Agarwal, “Tailoring light-matter coupling in semiconductor and hybrid-plasmonic nanowires,” Rep. Prog. Phys. 77(8), 086401 (2014).
[Crossref] [PubMed]

Surf. Int. Anal. (1)

Y. Ogata, N. A. Tuan, S. Takase, and G. Mizutani, “Polarization and azimuthal angle dependence of the optical second harmonic generation from Pt nanowires on the MgO(110) faceted template,” Surf. Int. Anal. 42(10-11), 1663–1666 (2010).
[Crossref]

Other (3)

Y. R. Shen, The Principles of Nonlinear Optics (J. Wiley & Sons, 1984).

R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic, 2008).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Nano-micro-structuring of Ni surface. (a) Experimental setup for surface nano/micro-structuring on a Ni. The laser polarization is indicated with a double arrow in the plot. α is the angle between the two laser polarization directions. (b) An optical microscope image of the created sample of Ni. (c) SEM image of NC-MCs on Ni showing micro-cubes. (d) Zoomed view, showing smaller features of (c).
Fig. 2
Fig. 2 SHG intensity measurement. (a) Optical configuration of the reflected SHG intensity measurement for the Ni NC-MCs sample at an incidence angle of 45°. The sample rotation angle φ is defined as the angle between the incident plane and the groove direction. The laser polarization is indicated with a double arrow in the scheme. (b) Power dependence of the SHG intensity for the NC-MCs plotted on a log-log scale. The slope value for the fits to these data is ~two, confirming the second-order nature of the emitting light.
Fig. 3
Fig. 3 SHG enhancement. (a) The contribution of χ(2) for the Ni sample, at φ = 0°, 22.5°, 45°, 67.5°, and φ = 90°. Red dotted lines indicate the mirror plane. (b) Electric field distributions for the Ni NC-MCs calculated for the configurations at an incidence angle of 45° and φ = 0°, 22.5°, 45°, 67.5°, and φ = 90° by using the Finite Difference Time Domain (FDTD) method, and Enhancement Factors (EFs) curve for the sample rotation angle φ. The effective refractive index due to the nanostructures atop the micro-grooves, η = 1.333 for the Ni sample, was used in this calculation. |E| is the electric field magnitude. The color scale bar indicates the electric field strength and the values show the local electric field magnitude. Double arrows indicate the electric field vector E of an incident beam. Blue dotted curve represents EFs consisting of the |E|2 values calculated by using FDTD method. (c) Simulated SHG intensity curves for the sample rotation angle φ. The red curve is the theoretical intensity curve, described as {|χ(2)||E||E|}2.
Fig. 4
Fig. 4 Angular SHG intensity. The SHG intensity pattern of the NC-MCs as a function of the sample rotation angle φ. The data points are connected by lines to guide the eye. The solid curve shows the simulation curve calculated in Fig. 3(c). The dotted show the isotropic intensity pattern formed by averaged intensity at φ = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and φ = 315°.
Fig. 5
Fig. 5 Nanostructural effects on the SHG intensity pattern. (a) The SEM image of the surface of Ni NS sample. (b) Configuration of the NSs in the SHG intensity measurement. (c) The expanding image of (a). (d) The SHG intensity pattern of the NSs as a function of the sample rotation angle φ. The data points are connected by lines to guide the eye. The dotted circle show the isotropic intensity pattern formed by averaged intensity.
Fig. 6
Fig. 6 Effect of NSs on SHG emission. (a) The SEM image of the surface of Ni MCs sample. (c) The expanding image of (a). (b) Configuration of the MCs in the SHG intensity measurement. (c) The SHG intensity pattern of the MCs as a function of the sample rotation angle φ. The data points are connected by lines to guide the eye. The solid curve show the simulation curve calculated using η = 1.041 in Fig. 3(c). The dotted show the isotropic intensity pattern formed by averaged intensity at φ = 0°, 45°, 90°, 135°, 180°, 225°, 270°, and φ = 315°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| E s R ( 2 ω ) | 2 | F Y ( 2 ω ) χ Y Y Y ( 2 ) E Y , l o c 2 ( ω ) | 2
Λ = λ η
η = Re [ ε ( ε + 1 ) ] 1 2

Metrics