Abstract

We present a highly birefringent fiber with a core made of artificial anisotropic glass material. The fiber core is composed of interleaved subwavelength layers of two types of soft glasses ordered in a rectangular structure. A pair of thermally matched glasses, a low refractive index borosilicate glass and a high refractive index lead oxide glass, are used. The fiber has a unique flat profile of birefringence over one octave, weakly dependent on wavelength. The group birefringence and effective mode area were measured in a broadband range across the visible and the near infrared for the fundamental mode and were found to be equal 1.8 × 10−3 and 20 μm2, respectively. The group birefringence is uniquely flat over the wavelength range of 0.8-1.7 μm and the relative difference of birefringence is below 0.2 × 10−3. The measured dispersion shows also relatively flat characteristics varying from −60 ps/(nm × km) at 1150 nm to 20 ps/(nm × km) at 1690 nm with Zero Dispersion Wavelength at 1520 nm. We demonstrated an application of the fiber for polarization maintaining broadband supercontinuum generation in the range of 1210-1830 nm when pumped with a subpicosecond fiber-based laser at 1560 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of single-polarization elliptical-hole core circular-hole holey fibers with zero dispersion at 1.55 μm

Masashi Eguchi and Yasuhide Tsuji
J. Opt. Soc. Am. B 25(10) 1690-1701 (2008)

Geometrical birefringence in square-lattice holey fibers having a core consisting of a multiple defect

Masashi Eguchi and Yasuhide Tsuji
J. Opt. Soc. Am. B 24(4) 750-755 (2007)

Cladding defects in hollow core fibers for surface mode suppression and improved birefringence

M. Michieletto, J. K. Lyngsø, J. Lægsgaard, and O. Bang
Opt. Express 22(19) 23324-23332 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
    [Crossref]
  2. T. R. Wolinski, “Polarimetric optical fibers and sensors,” in Progress in Optics vol. XL, E. Wolf, ed. (North Holland, 2000).
  3. D. Penninckx, N. Beck, J.-F. Gleyze, and L. Videau, “Signal Propagation Over Polarization-Maintaining Fibers: Problem and Solutions,” J. Lightwave Technol. 24(11), 4197–4207 (2006).
    [Crossref]
  4. Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
    [Crossref] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
    [Crossref] [PubMed]
  6. F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers: Properties and Applications (Springer Netherlands, 2007).
  7. O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
    [Crossref]
  8. L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15(14), 8892–8897 (2007).
    [Crossref] [PubMed]
  9. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
    [Crossref] [PubMed]
  10. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
    [Crossref]
  11. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20(2), 1385–1391 (2012).
    [Crossref] [PubMed]
  12. M. J. Steel and R. M. Osgood., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26(4), 229–231 (2001).
    [Crossref] [PubMed]
  13. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
    [Crossref] [PubMed]
  14. Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32(5), 469–471 (2007).
    [Crossref] [PubMed]
  15. F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, “Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes,” Opt. Lett. 35(4), 544–546 (2010).
    [Crossref] [PubMed]
  16. I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
    [Crossref]
  17. S. Ertman, M. Tefelska, M. Chylowski, A. Rodriquez, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and T. R. Wolinski, “Index guiding photonic liquid crystal fibers for practical applications,” J. Lightwave Technol. 30(8), 1208–1214 (2012).
    [Crossref]
  18. J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
    [Crossref] [PubMed]
  19. P. Mergo, T. Martynkien, and W. Urbanczyk, “Polymer optical microstructured fiber with birefringence induced by stress-applying elements,” Opt. Lett. 39(10), 3018–3021 (2014).
    [Crossref] [PubMed]
  20. T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
    [Crossref]
  21. B. Gu, W. Yuan, A. P. Zhang, and O. Bang, “All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature,” Proc. SPIE 8311, 831121 (2011).
    [Crossref]
  22. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
    [Crossref] [PubMed]
  23. A. Cerqueira S, D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, and H. L. Fragnito, “Broadband single-polarization guidance in hybrid photonic crystal fibers,” Opt. Lett. 36(2), 133–135 (2011).
    [Crossref] [PubMed]
  24. R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett. 34(20), 3119–3121 (2009).
    [Crossref] [PubMed]
  25. A. Wang, A. George, J. Liu, and J. Knight, “Highly birefringent lamellar core fiber,” Opt. Express 13(16), 5988–5993 (2005).
    [Crossref] [PubMed]
  26. A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
    [Crossref]
  27. M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
    [Crossref]
  28. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).
  29. J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
    [Crossref]
  30. Schott Glass Catalogue, 2003.
  31. M. G. Shlyagin, A. V. Khomenko, and D. Tentori, “Birefringence dispersion measurement in optical fibers by wavelength scanning,” Opt. Lett. 20(8), 869–871 (1995).
    [Crossref] [PubMed]
  32. J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
    [Crossref]
  33. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
    [Crossref] [PubMed]
  34. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
    [Crossref]
  35. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
    [Crossref] [PubMed]
  36. M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
    [Crossref] [PubMed]
  37. M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
    [Crossref] [PubMed]

2015 (3)

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

2014 (3)

2013 (1)

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

2012 (3)

2011 (3)

2010 (3)

2009 (2)

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett. 34(20), 3119–3121 (2009).
[Crossref] [PubMed]

2008 (2)

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

2007 (3)

2006 (1)

2005 (1)

2004 (3)

2001 (2)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

M. J. Steel and R. M. Osgood., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26(4), 229–231 (2001).
[Crossref] [PubMed]

2000 (1)

1995 (1)

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Abramski, K.

Abramski, K. M.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Anuszkiewicz, A.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Araujo, F.

O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Arriaga, J.

Bang, O.

B. Gu, W. Yuan, A. P. Zhang, and O. Bang, “All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature,” Proc. SPIE 8311, 831121 (2011).
[Crossref]

Beck, N.

Beltrán-Mejía, F.

Berghmans, F.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Birks, T. A.

Bjarklew, A.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Broeng, J.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Brown, T.

Buczynski, R.

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

S. Ertman, M. Tefelska, M. Chylowski, A. Rodriquez, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and T. R. Wolinski, “Index guiding photonic liquid crystal fibers for practical applications,” J. Lightwave Technol. 30(8), 1208–1214 (2012).
[Crossref]

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Cerqueira S, A.

Chesini, G.

Chylowski, M.

Cimek, J.

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

Ciprian, D.

Cordeiro, C. M.

Cox, F.

Dabrowski, R.

de Oliveira, I.

Dong, X.

Eggleton, B. J.

Ertman, S.

Fellew, M.

Ferreira, L.

O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Fleming, S.

Folkenberg, J.

Fragnito, H. L.

Frazão, O.

O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Frosz, M. H.

Geernaert, T.

George, A.

George, A. K.

Gleyze, J.-F.

Golojuch, G.

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Goto, R.

Gu, B.

B. Gu, W. Yuan, A. P. Zhang, and O. Bang, “All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature,” Proc. SPIE 8311, 831121 (2011).
[Crossref]

Hansen, T. P.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Heidt, A.

Henry, G.

Hernandez-Figueroa, H. E.

Himeno, K.

Hlubina, P.

Hudelist, F.

Issa, N. A.

Jackson, S. D.

Jakobsen, C.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Jin, L.

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kai, G.

Karpisz, T.

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

Kee, C. S.

Khomenko, A. V.

Kim, B. H.

Kim, S. E.

Klimczak, M.

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

Klimek, J.

Knight, J.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Krzempek, K.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Kuhlmey, B. T.

Kujawa, I.

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

Large, M. C.

Lee, C. G.

Lee, S.

Li, Y.

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Liu, J.

Liu, Y.

Lona, D. G.

Lu, Y.

Makara, M.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Mangan, B. J.

Martynkien, T.

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

P. Mergo, T. Martynkien, and W. Urbanczyk, “Polymer optical microstructured fiber with birefringence induced by stress-applying elements,” Opt. Lett. 39(10), 3018–3021 (2014).
[Crossref] [PubMed]

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
[Crossref] [PubMed]

Mergo, P.

Mortensen, N.

Nasilowski, T.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Nielsen, M.

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Nowinowski-Kruszelnicki, E.

Nowosielski, J.

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Olszewski, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Ortigosa-Blanch, A.

Osgood, R. M.

Penninckx, D.

Pniewski, J.

Poturaj, K.

Pysz, D.

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

S. Ertman, M. Tefelska, M. Chylowski, A. Rodriquez, D. Pysz, R. Buczynski, E. Nowinowski-Kruszelnicki, R. Dabrowski, and T. R. Wolinski, “Index guiding photonic liquid crystal fibers for practical applications,” J. Lightwave Technol. 30(8), 1208–1214 (2012).
[Crossref]

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Radzewicz, C.

Rodriquez, A.

Russell, P. St. J.

Sadowski, M.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

Salski, B.

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

Santos, J.

O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4(8), 1071–1089 (1986).
[Crossref]

Shlyagin, M. G.

Silvestre, E.

Simonsen, H.

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

Siwicki, B.

Skibinski, P.

Skorupski, K.

Sobon, G.

M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
[Crossref] [PubMed]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Sonnenfeld, C.

Statkiewicz-Barabach, G.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Steel, M. J.

Stefaniuk, T.

Stepien, R.

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Stepniewski, G.

J. Pniewski, T. Stefaniuk, G. Stepniewski, D. Pysz, T. Martynkien, R. Stepien, and R. Buczynski, “Limits in development of photonic crystal fibers with a subwavelength inclusion in the core,” Opt. Mater. Express 5(10), 2366–2376 (2015).
[Crossref]

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

Sun, T.

Swat, M.

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

Szczurowski, M.

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Szczurowski, M. K.

Szpulak, M.

Taghizadeh, M. R.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Takenaga, K.

Tarnowski, K.

Tefelska, M.

Tentori, D.

Thienpont, H.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Urbanczyk, W.

van Eijkelenborg, M. A.

Videau, L.

Waddie, A. J.

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

A. J. Waddie, R. Buczynski, F. Hudelist, J. Nowosielski, D. Pysz, R. Stepien, and M. R. Taghizadeh, “Form birefringence in nanostructured micro-optical devices,” Opt. Mater. Express 1(7), 1251–1261 (2011).
[Crossref]

Wadsworth, W. J.

Wang, A.

Wang, L.

Wang, Z.

Wojcik, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

Wolinski, T. R.

Yang, D.

Yuan, S.

Yuan, W.

B. Gu, W. Yuan, A. P. Zhang, and O. Bang, “All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature,” Proc. SPIE 8311, 831121 (2011).
[Crossref]

Yue, Y.

Zhang, A. P.

B. Gu, W. Yuan, A. P. Zhang, and O. Bang, “All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature,” Proc. SPIE 8311, 831121 (2011).
[Crossref]

Zhang, C.

Zhu, Z.

Appl. Phys. B (1)

T. Martynkien, A. Anuszkiewicz, G. Statkiewicz-Barabach, J. Olszewski, G. Golojuch, M. Szczurowski, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, T. Nasilowski, F. Berghmans, and H. Thienpont, “Birefringent photonic crystal fibers with zero polarimetric sensitivity to temperature,” Appl. Phys. B 94(4), 635–640 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklew, J. R. Jensen, and H. Simonsen, “Highly brefringent index-guiding photonic crystal fibers,” IEEE Photonics Technol. Lett. 13(6), 588–590 (2001).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

O. Frazão, J. Santos, F. Araujo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photonics Rev. 2(6), 449–459 (2008).
[Crossref]

Laser Phys. Lett. (1)

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

Opt. Express (11)

Z. Zhu and T. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
[Crossref] [PubMed]

J. Folkenberg, M. Nielsen, N. Mortensen, C. Jakobsen, and H. Simonsen, “Polarization maintaining large mode area photonic crystal fiber,” Opt. Express 12(5), 956–960 (2004).
[Crossref] [PubMed]

A. Wang, A. George, J. Liu, and J. Knight, “Highly birefringent lamellar core fiber,” Opt. Express 13(16), 5988–5993 (2005).
[Crossref] [PubMed]

L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15(14), 8892–8897 (2007).
[Crossref] [PubMed]

P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien, and W. Urbanczyk, “Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry,” Opt. Express 15(18), 11073–11081 (2007).
[Crossref] [PubMed]

R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno, “Birefringent all-solid hybrid microstructured fiber,” Opt. Express 16(23), 18752–18763 (2008).
[Crossref] [PubMed]

M. Klimczak, B. Siwicki, P. Skibiński, D. Pysz, R. Stępień, A. Heidt, C. Radzewicz, and R. Buczyński, “Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22(15), 18824–18832 (2014).
[Crossref] [PubMed]

M. Klimczak, G. Soboń, K. Abramski, and R. Buczyński, “Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump,” Opt. Express 22(26), 31635–31645 (2014).
[Crossref] [PubMed]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
[Crossref] [PubMed]

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18(14), 15113–15121 (2010).
[Crossref] [PubMed]

S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20(2), 1385–1391 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

I. Kujawa, R. Buczynski, T. Martynkien, M. Sadowski, D. Pysz, R. Stepien, A. J. Waddie, and M. R. Taghizadeh, “Multiple defect core photonic crystal fiber with high birefringence induced by squeezed lattice with elliptical holes in soft glass,” Opt. Fiber Technol. 18(4), 220–225 (2012).
[Crossref]

Opt. Lett. (9)

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29(12), 1336–1338 (2004).
[Crossref] [PubMed]

M. G. Shlyagin, A. V. Khomenko, and D. Tentori, “Birefringence dispersion measurement in optical fibers by wavelength scanning,” Opt. Lett. 20(8), 869–871 (1995).
[Crossref] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25(18), 1325–1327 (2000).
[Crossref] [PubMed]

M. J. Steel and R. M. Osgood., “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26(4), 229–231 (2001).
[Crossref] [PubMed]

A. Cerqueira S, D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, and H. L. Fragnito, “Broadband single-polarization guidance in hybrid photonic crystal fibers,” Opt. Lett. 36(2), 133–135 (2011).
[Crossref] [PubMed]

P. Mergo, T. Martynkien, and W. Urbanczyk, “Polymer optical microstructured fiber with birefringence induced by stress-applying elements,” Opt. Lett. 39(10), 3018–3021 (2014).
[Crossref] [PubMed]

R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett. 34(20), 3119–3121 (2009).
[Crossref] [PubMed]

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, “Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes,” Opt. Lett. 35(4), 544–546 (2010).
[Crossref] [PubMed]

Y. Yue, G. Kai, Z. Wang, T. Sun, L. Jin, Y. Lu, C. Zhang, J. Liu, Y. Li, Y. Liu, S. Yuan, and X. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32(5), 469–471 (2007).
[Crossref] [PubMed]

Opt. Mater. Express (2)

Opt. Quantum Electron. (2)

J. Cimek, R. Stępień, M. Klimczak, I. Kujawa, D. Pysz, and R. Buczyński, “Modification of borosilicate glass composition for joint thermal processing with lead oxide glasses for development of photonic crystal fibers,” Opt. Quantum Electron. 47(1), 27–35 (2015).
[Crossref]

M. Swat, B. Salski, T. Karpisz, G. Stepniewski, I. Kujawa, M. Klimczak, and R. Buczynski, “Numerical analysis of a highly birefringent microstructured fiber with an anisotropic core,” Opt. Quantum Electron. 47(1), 77–88 (2015).
[Crossref]

Proc. SPIE (1)

B. Gu, W. Yuan, A. P. Zhang, and O. Bang, “All-solid birefringent hybrid photonic crystal fiber based interferometric sensor for measurement of strain and temperature,” Proc. SPIE 8311, 831121 (2011).
[Crossref]

Other (4)

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999).

T. R. Wolinski, “Polarimetric optical fibers and sensors,” in Progress in Optics vol. XL, E. Wolf, ed. (North Holland, 2000).

F. Poli, A. Cucinotta, and S. Selleri, Photonic Crystal Fibers: Properties and Applications (Springer Netherlands, 2007).

Schott Glass Catalogue, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Schematic of a fiber with anisotropic core. Anisotropic core composed of interleaved high-index and low-index glass strips. The lattice constant Λ is smaller than wavelength.
Fig. 2
Fig. 2 Material dispersion (a) and dispersion characteristics (b) of borosilicate glass NC21A and lead-silicate glass F2 and their relative difference.
Fig. 3
Fig. 3 A schematic of nanostructured core composed of 7 1D high refractive index strips (a). A central strip has a nano-defect in the center (b).
Fig. 4
Fig. 4 Calculated birefringence (a) for the fundamental mode and dispersion (b) of the polarized component of the fundamental mode for various lattice constants Λ between 300 and 500 nm. The polarization components Ex denotes direction of electric field vector along layers in the core (X axis), while Ey denotes direction of electric field vector perpendicular to layers in the core (Y axis).
Fig. 5
Fig. 5 Calculated phase and group birefringence for fundamental mode of the fiber with anisotropic core for ideal core structure with period of Λ = 0.5 µm and Λ = 0.45 µm and filling factor f = 1. The solid line denotes result for the structure without the central defect, and the dashed line denotes results for the central defect in the core.
Fig. 6
Fig. 6 Calculated dispersion for polarization components of the fundamental mode in the fiber with anisotropic core for ideal core structure with period of Λ = 500 nm and filling factor f = 1. Blue line denotes result for the structure without central defect, and red line denotes results for the fiber with central defect in the core 1.175 µm long.. Total size of the rectangular core is 3.25 µm × 6.00 µm.
Fig. 7
Fig. 7 Subpreform of the anisotropic core of the fiber.
Fig. 8
Fig. 8 SEM image of the birefringent fiber ZEB II/4 with nanostructured core a) cross section of the fiber, (b) rectangular nanostructured core.
Fig. 9
Fig. 9 Calculated phase (a) and group (b) birefringence for fundamental mode of the fiber with ideal anisotropic core with geometrical parameters based on SEM images (ZEBII/4 and ZEBII/6) for structure with and whithout nanodefect in the core.
Fig. 10
Fig. 10 Calculated dispersion for polarization components of the fundamental mode of the fiber with ideal anisotropic core with geometrical parameters based on SEM images (ZEBII/4 and ZEBII/6) for structure with and without nanodefect in the core.
Fig. 11
Fig. 11 Group birefringence measurement set-up.
Fig. 12
Fig. 12 Registered interferograms for the fundamental mode of the anisotropic core fiber ZEBII/4. Fiber length L = 95 mm.
Fig. 13
Fig. 13 Numerical simulation results of phase modal birefringence against the wavelength for the developed fiber based on SEM images (a). Experimental (points) and numerical simulation (lines) results of group modal birefringence spectral dependence (b).
Fig. 14
Fig. 14 The unbalanced Mach-Zehnder interferometer setup used for dispersion measurement (a), interference image (b).
Fig. 15
Fig. 15 Measurements of dispersion in the spectral range of 900-1700nm for fibers with anisotropic core ZEBII/4, and ZEBII/6 (a). Measured and calculated dispersion for birefringent fiber ZEBII/4 (b).
Fig. 16
Fig. 16 Attenuation measurement of anisotropic core fiber with F2/NC21A glasses.
Fig. 17
Fig. 17 Measured and simulated supercontinuum spectra for the structure of ZEB/II-6 fiber.

Tables (1)

Tables Icon

Table 1 Geometrical parameters of developed fibers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B = n x n y = λ 2 π ( β x β y ) .
G = B λ d B d λ .
D x = λ c d 2 n x d λ 2 , D y = λ c d 2 n y d λ 2 .
d Δ φ d λ Δ λ = ± 2 π ,
| G | = λ 0 2 Δ λ L ,
D = 1 c L d Δ L ( λ ) d λ ,

Metrics