Abstract

We report optically induced rapid aggregation and subsequent separation of selective single-walled carbon nanotubes (SWNT) functionalized with bacteriorhodopsin. Induced aggregation rate depends on the absorption of bacteriorhodopsin. Optically separated, bio-nano hybrid complexes show stable, preferential binding with SWNTs of specific diameters whereas, unbound SWNTs remains well-dispersed in the solution.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon-induced Förster resonance energy transfer in a hybrid material engineered from quantum dots and bacteriorhodopsin

Victor Krivenkov, Pavel Samokhvalov, Daria Solovyeva, Regina Bilan, Alexander Chistyakov, and Igor Nabiev
Opt. Lett. 40(7) 1440-1443 (2015)

Optical anisotropy in single-walled carbon nanotubes

Seongwoo Yoo, Yongmin Jung, Dong Soo Lee, Won-Taek Han, Kyunghwan Oh, Y. Murakami, T. Edamura, and Shigeo Maruyama
Opt. Lett. 30(23) 3201-3203 (2005)

References

  • View by:
  • |
  • |
  • |

  1. F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
    [Crossref] [PubMed]
  2. E. Katz, “Bioelectronics,” Electroanalysis 18(19‐20), 1855–1857 (2006).
    [Crossref]
  3. M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
    [Crossref] [PubMed]
  4. S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
    [Crossref] [PubMed]
  5. J. K. Lanyi, “Understanding structure and function in the light-driven proton pump Bacteriorhodopsin,” J. Struct. Biol. 124(2-3), 164–178 (1998).
    [Crossref] [PubMed]
  6. S. P. Stoylov and M. V. Stoimenova, Molecular and Colloidal Electro-Optics (CRC Press, 2006).
  7. R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41(1), 683–733 (1990).
    [Crossref] [PubMed]
  8. N. Sinha, J. Ma, and J. T. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol. 6(3), 573–590 (2006).
    [Crossref] [PubMed]
  9. E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
    [Crossref] [PubMed]
  10. J. Wang, “Carbon-Nanotube based electrochemical biosensors:A Review,” Electroanalysis 17(1), 7–14 (2005).
    [Crossref]
  11. G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
    [Crossref] [PubMed]
  12. E. Kymakis and G. A. J. Amaratunga, “Photovoltaic cells based on dye-sensitisation of Single-wall Carbon Nanotubes in a polymer matrix,” Sol. Energy Mater. Sol. Cells 80(4), 465–472 (2003).
    [Crossref]
  13. D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
    [Crossref]
  14. Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
    [Crossref] [PubMed]
  15. M. F. Ghasemi, A. Shodjai-Arani, and N. Moazami, “Cultivation of Halobacterium salinarum in sequential batch reactor and its purple membrane purification,” Process Biochem. 43(10), 1077–1082 (2008).
    [Crossref]
  16. J. N. Israelachvili, Intermolecular and Surface Forces: revised third edition (Academic press, 2011).
  17. A. N. Giordano, H. Chaturvedi, and J. Poler, “Critical coagulation concentrations for Carbon Nanotubes in non aqueous solvent,” J. Phys. Chem. C 111(31), 11583–11589 (2007).
    [Crossref]
  18. S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
    [Crossref] [PubMed]
  19. H. Chaturvedi and J. Poler, “Photon enhanced aggregation of single walled Carbon Nanotube dispersions,” Appl. Phys. Lett. 90(22), 223109 (2007).
    [Crossref]
  20. H. Eckstein and U. Kreibig, Zeitschrift für Physik D Atoms, “Light induced aggregation of Metal clusters,” Molecules and Clusters 26(1), 239–241 (1993).
    [Crossref]
  21. H. Hamaker, “The london-vanderwaals attraction between Sphercial particles,” Physica 4(10), 1058–1072 (1937).
    [Crossref]
  22. P. Bertoncini and O. Chauvet, “Conformational structural changes of Bacteriorhodopsin adsorbed onto Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 114(12), 4345–4350 (2010).
    [Crossref] [PubMed]
  23. W. D. Hoff, K.-H. Jung, and J. L. Spudich, “Molecular mechanism of photosignaling by archaeal sensory rhodopsins,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 223–258 (1997).
    [Crossref] [PubMed]
  24. A. Bondar, “Pathways for Retinal deprotonation in Bacteriorhodopsin,” Romanian Reports in Physics 57(4), 971 (2005).
  25. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
    [Crossref] [PubMed]
  26. A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
    [Crossref] [PubMed]
  27. C. Rao and R. Voggu, “Charge-transfer with graphene and nanotubes,” Mater. Today 13(9), 34–40 (2010).
    [Crossref]

2014 (1)

S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
[Crossref] [PubMed]

2012 (1)

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

2011 (1)

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

2010 (2)

P. Bertoncini and O. Chauvet, “Conformational structural changes of Bacteriorhodopsin adsorbed onto Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 114(12), 4345–4350 (2010).
[Crossref] [PubMed]

C. Rao and R. Voggu, “Charge-transfer with graphene and nanotubes,” Mater. Today 13(9), 34–40 (2010).
[Crossref]

2009 (1)

Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
[Crossref] [PubMed]

2008 (1)

M. F. Ghasemi, A. Shodjai-Arani, and N. Moazami, “Cultivation of Halobacterium salinarum in sequential batch reactor and its purple membrane purification,” Process Biochem. 43(10), 1077–1082 (2008).
[Crossref]

2007 (3)

A. N. Giordano, H. Chaturvedi, and J. Poler, “Critical coagulation concentrations for Carbon Nanotubes in non aqueous solvent,” J. Phys. Chem. C 111(31), 11583–11589 (2007).
[Crossref]

H. Chaturvedi and J. Poler, “Photon enhanced aggregation of single walled Carbon Nanotube dispersions,” Appl. Phys. Lett. 90(22), 223109 (2007).
[Crossref]

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

2006 (2)

E. Katz, “Bioelectronics,” Electroanalysis 18(19‐20), 1855–1857 (2006).
[Crossref]

N. Sinha, J. Ma, and J. T. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol. 6(3), 573–590 (2006).
[Crossref] [PubMed]

2005 (5)

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

J. Wang, “Carbon-Nanotube based electrochemical biosensors:A Review,” Electroanalysis 17(1), 7–14 (2005).
[Crossref]

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

A. Bondar, “Pathways for Retinal deprotonation in Bacteriorhodopsin,” Romanian Reports in Physics 57(4), 971 (2005).

2003 (2)

E. Kymakis and G. A. J. Amaratunga, “Photovoltaic cells based on dye-sensitisation of Single-wall Carbon Nanotubes in a polymer matrix,” Sol. Energy Mater. Sol. Cells 80(4), 465–472 (2003).
[Crossref]

S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
[Crossref] [PubMed]

2002 (1)

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

1998 (1)

J. K. Lanyi, “Understanding structure and function in the light-driven proton pump Bacteriorhodopsin,” J. Struct. Biol. 124(2-3), 164–178 (1998).
[Crossref] [PubMed]

1997 (1)

W. D. Hoff, K.-H. Jung, and J. L. Spudich, “Molecular mechanism of photosignaling by archaeal sensory rhodopsins,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 223–258 (1997).
[Crossref] [PubMed]

1993 (1)

H. Eckstein and U. Kreibig, Zeitschrift für Physik D Atoms, “Light induced aggregation of Metal clusters,” Molecules and Clusters 26(1), 239–241 (1993).
[Crossref]

1990 (1)

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41(1), 683–733 (1990).
[Crossref] [PubMed]

1937 (1)

H. Hamaker, “The london-vanderwaals attraction between Sphercial particles,” Physica 4(10), 1058–1072 (1937).
[Crossref]

Amaratunga, G. A. J.

E. Kymakis and G. A. J. Amaratunga, “Photovoltaic cells based on dye-sensitisation of Single-wall Carbon Nanotubes in a polymer matrix,” Sol. Energy Mater. Sol. Cells 80(4), 465–472 (2003).
[Crossref]

Artukovic, E.

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

Bachilo, S. M.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Banerjee, S.

S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
[Crossref] [PubMed]

Bertoncini, P.

P. Bertoncini and O. Chauvet, “Conformational structural changes of Bacteriorhodopsin adsorbed onto Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 114(12), 4345–4350 (2010).
[Crossref] [PubMed]

Bhattacharya, S.

S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
[Crossref] [PubMed]

Birge, R. R.

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41(1), 683–733 (1990).
[Crossref] [PubMed]

Bondar, A.

A. Bondar, “Pathways for Retinal deprotonation in Bacteriorhodopsin,” Romanian Reports in Physics 57(4), 971 (2005).

Cagnoli, R.

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

Chaturvedi, H.

H. Chaturvedi and J. Poler, “Photon enhanced aggregation of single walled Carbon Nanotube dispersions,” Appl. Phys. Lett. 90(22), 223109 (2007).
[Crossref]

A. N. Giordano, H. Chaturvedi, and J. Poler, “Critical coagulation concentrations for Carbon Nanotubes in non aqueous solvent,” J. Phys. Chem. C 111(31), 11583–11589 (2007).
[Crossref]

Chauvet, O.

P. Bertoncini and O. Chauvet, “Conformational structural changes of Bacteriorhodopsin adsorbed onto Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 114(12), 4345–4350 (2010).
[Crossref] [PubMed]

Chen, Z.

Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
[Crossref] [PubMed]

Clarson, S. J.

S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
[Crossref] [PubMed]

D’Souza, F.

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

D’Souza, J.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Dai, H.

Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
[Crossref] [PubMed]

Dailey, J.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Das, A.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Das, S. K.

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

Eckstein, H.

H. Eckstein and U. Kreibig, Zeitschrift für Physik D Atoms, “Light induced aggregation of Metal clusters,” Molecules and Clusters 26(1), 239–241 (1993).
[Crossref]

Ford, W.

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

Ghasemi, M. F.

M. F. Ghasemi, A. Shodjai-Arani, and N. Moazami, “Cultivation of Halobacterium salinarum in sequential batch reactor and its purple membrane purification,” Process Biochem. 43(10), 1077–1082 (2008).
[Crossref]

Giordano, A. N.

A. N. Giordano, H. Chaturvedi, and J. Poler, “Critical coagulation concentrations for Carbon Nanotubes in non aqueous solvent,” J. Phys. Chem. C 111(31), 11583–11589 (2007).
[Crossref]

Goldsmith, B. R.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Govindaraj, A.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Grüner, G.

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

Guldi, D. M.

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

Hamaker, H.

H. Hamaker, “The london-vanderwaals attraction between Sphercial particles,” Physica 4(10), 1058–1072 (1937).
[Crossref]

Hauge, R. H.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Hecht, D. S.

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

Hoff, W. D.

W. D. Hoff, K.-H. Jung, and J. L. Spudich, “Molecular mechanism of photosignaling by archaeal sensory rhodopsins,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 223–258 (1997).
[Crossref] [PubMed]

Ito, O.

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

Johnson, A. T.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Jung, K.-H.

W. D. Hoff, K.-H. Jung, and J. L. Spudich, “Molecular mechanism of photosignaling by archaeal sensory rhodopsins,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 223–258 (1997).
[Crossref] [PubMed]

Jux, N.

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

Kaempgen, M.

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

Katz, E.

E. Katz, “Bioelectronics,” Electroanalysis 18(19‐20), 1855–1857 (2006).
[Crossref]

Kittrell, C.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Kreibig, U.

H. Eckstein and U. Kreibig, Zeitschrift für Physik D Atoms, “Light induced aggregation of Metal clusters,” Molecules and Clusters 26(1), 239–241 (1993).
[Crossref]

Kymakis, E.

E. Kymakis and G. A. J. Amaratunga, “Photovoltaic cells based on dye-sensitisation of Single-wall Carbon Nanotubes in a polymer matrix,” Sol. Energy Mater. Sol. Cells 80(4), 465–472 (2003).
[Crossref]

Lanyi, J. K.

J. K. Lanyi, “Understanding structure and function in the light-driven proton pump Bacteriorhodopsin,” J. Struct. Biol. 124(2-3), 164–178 (1998).
[Crossref] [PubMed]

Lazzeri, M.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Lerner, M. B.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
[Crossref] [PubMed]

Ma, J.

N. Sinha, J. Ma, and J. T. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol. 6(3), 573–590 (2006).
[Crossref] [PubMed]

Mauri, F.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Moazami, N.

M. F. Ghasemi, A. Shodjai-Arani, and N. Moazami, “Cultivation of Halobacterium salinarum in sequential batch reactor and its purple membrane purification,” Process Biochem. 43(10), 1077–1082 (2008).
[Crossref]

Mucci, A.

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

Mukherjee, N.

S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
[Crossref] [PubMed]

Narasimha, S.

S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
[Crossref] [PubMed]

Patwardhan, S. V.

S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
[Crossref] [PubMed]

Pazina, T.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Poler, J.

H. Chaturvedi and J. Poler, “Photon enhanced aggregation of single walled Carbon Nanotube dispersions,” Appl. Phys. Lett. 90(22), 223109 (2007).
[Crossref]

A. N. Giordano, H. Chaturvedi, and J. Poler, “Critical coagulation concentrations for Carbon Nanotubes in non aqueous solvent,” J. Phys. Chem. C 111(31), 11583–11589 (2007).
[Crossref]

Prato, M.

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

Qin, S.

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

Rahman, G.

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

Rahman, G. M.

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

Rao, C.

C. Rao and R. Voggu, “Charge-transfer with graphene and nanotubes,” Mater. Today 13(9), 34–40 (2010).
[Crossref]

Rao, C. N.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Robinson, M. K.

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Roth, S.

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

Roy, A.

S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
[Crossref] [PubMed]

Saitta, A. M.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Sandanayaka, A. S.

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

Schenetti, L.

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

Shodjai-Arani, A.

M. F. Ghasemi, A. Shodjai-Arani, and N. Moazami, “Cultivation of Halobacterium salinarum in sequential batch reactor and its purple membrane purification,” Process Biochem. 43(10), 1077–1082 (2008).
[Crossref]

Sinha, N.

N. Sinha, J. Ma, and J. T. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol. 6(3), 573–590 (2006).
[Crossref] [PubMed]

Smalley, R. E.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Sood, A. K.

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Spudich, J. L.

W. D. Hoff, K.-H. Jung, and J. L. Spudich, “Molecular mechanism of photosignaling by archaeal sensory rhodopsins,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 223–258 (1997).
[Crossref] [PubMed]

Steintz-Kannan, M.

S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
[Crossref] [PubMed]

Strano, M. S.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Tabakman, S. M.

Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
[Crossref] [PubMed]

Vaccari, L.

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

Voggu, R.

C. Rao and R. Voggu, “Charge-transfer with graphene and nanotubes,” Mater. Today 13(9), 34–40 (2010).
[Crossref]

Wang, J.

J. Wang, “Carbon-Nanotube based electrochemical biosensors:A Review,” Electroanalysis 17(1), 7–14 (2005).
[Crossref]

Weisman, R. B.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Yeow, J. T.

N. Sinha, J. Ma, and J. T. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol. 6(3), 573–590 (2006).
[Crossref] [PubMed]

Zandler, M. E.

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

ACS Nano (1)

M. B. Lerner, J. D’Souza, T. Pazina, J. Dailey, B. R. Goldsmith, M. K. Robinson, and A. T. Johnson, “Hybrids of a genetically engineered antibody and a carbon nanotube transistor for detection of prostate cancer biomarkers,” ACS Nano 6(6), 5143–5149 (2012).
[Crossref] [PubMed]

Angew. Chem. (1)

D. M. Guldi, G. Rahman, M. Prato, N. Jux, S. Qin, and W. Ford, “Single Wall Carbon Nanotubes as intergrative building blocks for solar-energy conversion,” Angew. Chem. 117(13), 2051–2054 (2005).
[Crossref]

Annu. Rev. Biophys. Biomol. Struct. (1)

W. D. Hoff, K.-H. Jung, and J. L. Spudich, “Molecular mechanism of photosignaling by archaeal sensory rhodopsins,” Annu. Rev. Biophys. Biomol. Struct. 26(1), 223–258 (1997).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. R. Birge, “Photophysics and molecular electronic applications of the rhodopsins,” Annu. Rev. Phys. Chem. 41(1), 683–733 (1990).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Chaturvedi and J. Poler, “Photon enhanced aggregation of single walled Carbon Nanotube dispersions,” Appl. Phys. Lett. 90(22), 223109 (2007).
[Crossref]

Chem. Commun. (Camb.) (1)

S. V. Patwardhan, N. Mukherjee, M. Steintz-Kannan, and S. J. Clarson, “Bioinspired synthesis of New Silica structures,” Chem. Commun. (Camb.) 10(10), 1122–1123 (2003).
[Crossref] [PubMed]

Electroanalysis (2)

E. Katz, “Bioelectronics,” Electroanalysis 18(19‐20), 1855–1857 (2006).
[Crossref]

J. Wang, “Carbon-Nanotube based electrochemical biosensors:A Review,” Electroanalysis 17(1), 7–14 (2005).
[Crossref]

J. Am. Chem. Soc. (2)

G. M. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, and M. Prato, “Combining Single Wall Carbon Nanotubes and photoactive polymers for photoconversion,” J. Am. Chem. Soc. 127(28), 10051–10057 (2005).
[Crossref] [PubMed]

F. D’Souza, S. K. Das, M. E. Zandler, A. S. Sandanayaka, and O. Ito, “Bionano donor-acceptor hybrids of Porphyrin, ssDNA, and Semiconductive Single-Wall Carbon Nanotubes for electron transfer via Porphyrin excitation,” J. Am. Chem. Soc. 133(49), 19922–19930 (2011).
[Crossref] [PubMed]

J. Nanosci. Nanotechnol. (1)

N. Sinha, J. Ma, and J. T. Yeow, “Carbon nanotube-based sensors,” J. Nanosci. Nanotechnol. 6(3), 573–590 (2006).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

P. Bertoncini and O. Chauvet, “Conformational structural changes of Bacteriorhodopsin adsorbed onto Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 114(12), 4345–4350 (2010).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

A. N. Giordano, H. Chaturvedi, and J. Poler, “Critical coagulation concentrations for Carbon Nanotubes in non aqueous solvent,” J. Phys. Chem. C 111(31), 11583–11589 (2007).
[Crossref]

J. Struct. Biol. (1)

J. K. Lanyi, “Understanding structure and function in the light-driven proton pump Bacteriorhodopsin,” J. Struct. Biol. 124(2-3), 164–178 (1998).
[Crossref] [PubMed]

Mater. Today (1)

C. Rao and R. Voggu, “Charge-transfer with graphene and nanotubes,” Mater. Today 13(9), 34–40 (2010).
[Crossref]

Molecules and Clusters (1)

H. Eckstein and U. Kreibig, Zeitschrift für Physik D Atoms, “Light induced aggregation of Metal clusters,” Molecules and Clusters 26(1), 239–241 (1993).
[Crossref]

Nano Lett. (1)

E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Grüner, “Transparent and flexible Carbon nanotube transistors,” Nano Lett. 5(4), 757–760 (2005).
[Crossref] [PubMed]

Nat. Protoc. (1)

Z. Liu, S. M. Tabakman, Z. Chen, and H. Dai, “Preparation of carbon nanotube bioconjugates for biomedical applications,” Nat. Protoc. 4(9), 1372–1381 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Das, A. K. Sood, A. Govindaraj, A. M. Saitta, M. Lazzeri, F. Mauri, and C. N. Rao, “Doping in carbon Nanotubes probed by Raman and transport measurements,” Phys. Rev. Lett. 99(13), 136803 (2007).
[Crossref] [PubMed]

Physica (1)

H. Hamaker, “The london-vanderwaals attraction between Sphercial particles,” Physica 4(10), 1058–1072 (1937).
[Crossref]

Process Biochem. (1)

M. F. Ghasemi, A. Shodjai-Arani, and N. Moazami, “Cultivation of Halobacterium salinarum in sequential batch reactor and its purple membrane purification,” Process Biochem. 43(10), 1077–1082 (2008).
[Crossref]

Romanian Reports in Physics (1)

A. Bondar, “Pathways for Retinal deprotonation in Bacteriorhodopsin,” Romanian Reports in Physics 57(4), 971 (2005).

Sci. Rep. (1)

S. Bhattacharya, S. Narasimha, A. Roy, and S. Banerjee, “Does shining light on Gold colloids Influence aggregation?” Sci. Rep. 4, 5213 (2014).
[Crossref] [PubMed]

Science (1)

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, “Structure-assigned optical spectra of Single-walled Carbon Nanotubes,” Science 298(5602), 2361–2366 (2002).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

E. Kymakis and G. A. J. Amaratunga, “Photovoltaic cells based on dye-sensitisation of Single-wall Carbon Nanotubes in a polymer matrix,” Sol. Energy Mater. Sol. Cells 80(4), 465–472 (2003).
[Crossref]

Other (2)

J. N. Israelachvili, Intermolecular and Surface Forces: revised third edition (Academic press, 2011).

S. P. Stoylov and M. V. Stoimenova, Molecular and Colloidal Electro-Optics (CRC Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Conceptual model of light induced aggregation of PM functionalized SWNTs due to charge transfer from optically active PM. (b) Interaction and inhomogeneous surface charges leads to aggregation due to decrease in repulsive potential. (c) SEM of aggregated PM functionalized SWNTs showing random surface binding of PM with SWNTs.

Fig. 2
Fig. 2

(a) Absorption spectra of SWNTs functionalized with PM (bacteriorhodopsin) kept in broadband light for varying time intervals from 1 to 4 hours (top to bottom). Inset shows absorption spectra of bacteriorhodopsin with its maximum peak at 570 nm. (b) Showing optically induced rate of aggregation in PM functionalized SWNTs as compared to pristine SWNTs and PM functionalized SWNTs kept in the dark. Enhanced aggregation is seen for green light as compared to red illumination.

Fig. 3
Fig. 3

(a) RBM showing preferential binding of PM with SWNTs of specific diameters (red line) as compared to pristine SWNTs (black line). (b) Histogram as plotted using multiple peak fit in RBM showing relative enrichment in SWNTs of specific diameters. (c)G band Raman spectra showing increase in G- band ~1540-1560 cm−1 in optically aggregated SWNTs functionalized with PM (red solid line) as compared to control pristine SWNTs (black dotted line). (d)G' band shows slight red shift indicating strong binding in PM functionalized SWNTs. D band (inset)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A H 3 4 K B T[ ε 1 ε 3 ε 1 + ε 3 ][ ε 2 ε 3 ε 2 + ε 3 ]+ 3h V e 8 2 × ( n 1 2 n 3 2 )( n 2 2 n 3 2 ) ( n 1 2 + n 3 2 ) ( n 2 2 + n 3 2 ) [ n 1 2 + n 3 2 + n 2 2 + n 3 2 ]

Metrics