Abstract

Cr3+-activated Y3Al2Ga3O12 garnet (YAGG:Cr3+) persistent phosphor has been recently reported as a potential candidate material for in vivo imaging application. Temperature dependence of photoluminescence (PL) spectra and thermostimulated luminescence (TSL) glow curves with several conditions, especially photostimulation wavelength dependence, were carefully investigated with the perspective of deep trap utilization for long-term in vivo imaging. The PL spectrum showed typical Cr3+ emission due to 2E→4A2 and 4T24A2 transitions. The integrated PL intensity of Cr3+ luminescence (2E→4A2 plus 4T24A2 transitions) does not suffer from temperature quenching up to 600 K. From the TSL glow curve measurements, it was found that the persistent luminescence cannot be activated by visible light excitation. However, photostimulation induced persistent luminescence by red to near-infrared light can be possible in this material.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near infrared photostimulated persistent luminescence and information storage of SrAl2O4:Eu2+,Dy3+ phosphor

Haibo Liu, Baoluo Feng, Li Luo, Chunlong Han, and Peter A. Tanner
Opt. Mater. Express 6(11) 3375-3385 (2016)

Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite

Yumiko Katayama, Hiroaki Kobayashi, Jumpei Ueda, Bruno Viana, and Setsuhisa Tanabe
Opt. Mater. Express 6(5) 1500-1505 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  2. G. Portal, “Review of the principal materials available for thermoluminescent dosimetry,” Radiat. Prot. Dosimetry 17, 351–357 (1986).
  3. K. Takahashi, J. Miyahara, and Y. Shibahara, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc. 132(6), 1492–1494 (1985).
    [Crossref]
  4. Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
    [Crossref] [PubMed]
  5. A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
    [Crossref]
  6. A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
    [Crossref] [PubMed]
  7. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
    [Crossref]
  8. Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
    [Crossref]
  9. Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
    [Crossref]
  10. J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
    [Crossref]
  11. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  12. T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
    [Crossref] [PubMed]
  13. F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
    [Crossref] [PubMed]
  14. A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
    [Crossref]
  15. Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga,Al)2O4 Cr, Bi red persistent phosphors considerations of high temperature persistent luminescence and photostimulated persistent luminesence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7849–7855 (2013).
    [Crossref]
  16. F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
    [Crossref] [PubMed]
  17. D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
    [Crossref]
  18. J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
    [Crossref]
  19. P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
    [Crossref]
  20. J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
    [Crossref]
  21. M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
    [Crossref]
  22. B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
    [Crossref]
  23. W. A. Wall, J. T. Karpick, and B. Di Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” J. Phys. C Solid State Phys. 4(18), 3258–3264 (1971).
    [Crossref]
  24. P. Avouris and T. N. Morgan, “A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn,” J. Chem. Phys. 74(8), 4347–4355 (1981).
    [Crossref]
  25. A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
    [Crossref]
  26. S. W. S. McKeever, Thermoluminescence of Solids, Cambridge Solid State Science Series (Cambridge University Press, Cambridge, 1988), p. 392.
  27. K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
    [Crossref]

2015 (3)

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

2014 (6)

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

2013 (4)

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga,Al)2O4 Cr, Bi red persistent phosphors considerations of high temperature persistent luminescence and photostimulated persistent luminesence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7849–7855 (2013).
[Crossref]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (1)

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]

2007 (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1990 (1)

M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
[Crossref]

1988 (1)

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

1986 (1)

G. Portal, “Review of the principal materials available for thermoluminescent dosimetry,” Radiat. Prot. Dosimetry 17, 351–357 (1986).

1985 (1)

K. Takahashi, J. Miyahara, and Y. Shibahara, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc. 132(6), 1492–1494 (1985).
[Crossref]

1981 (1)

P. Avouris and T. N. Morgan, “A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn,” J. Chem. Phys. 74(8), 4347–4355 (1981).
[Crossref]

1974 (1)

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
[Crossref]

1971 (1)

W. A. Wall, J. T. Karpick, and B. Di Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” J. Phys. C Solid State Phys. 4(18), 3258–3264 (1971).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Avouris, P.

P. Avouris and T. N. Morgan, “A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn,” J. Chem. Phys. 74(8), 4347–4355 (1981).
[Crossref]

Basavaraju, N.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Bessière, A.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]

Bessodes, M.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Binet, L.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Bos, A. J. J.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Capobianco, J. A.

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

Chanéac, C.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Chuang, Y.-J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Cockayne, B.

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

Di Bartolo, B.

W. A. Wall, J. T. Karpick, and B. Di Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” J. Phys. C Solid State Phys. 4(18), 3258–3264 (1971).
[Crossref]

Dobrowolska, A.

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

Dorenbos, P.

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

Gourier, D.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Hehir, J. P.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
[Crossref]

Henderson, B.

M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
[Crossref]

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

Henry, M. O.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
[Crossref]

Imbusch, G. F.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
[Crossref]

Jacquart, S.

Jolivet, J.-P.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Karpick, J. T.

W. A. Wall, J. T. Karpick, and B. Di Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” J. Phys. C Solid State Phys. 4(18), 3258–3264 (1971).
[Crossref]

Katayama, Y.

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Kuroishi, K.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Larkin, J. P.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
[Crossref]

le Masne de Chermont, Q.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Lecointre, A.

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]

Liang, Y.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

Liu, F.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Maîtrejean, S.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Maldiney, T.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

Marshall, A.

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Miyahara, J.

K. Takahashi, J. Miyahara, and Y. Shibahara, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc. 132(6), 1492–1494 (1985).
[Crossref]

Morgan, T. N.

P. Avouris and T. N. Morgan, “A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn,” J. Chem. Phys. 74(8), 4347–4355 (1981).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

O’Donnell, K. P.

M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
[Crossref]

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

Pan, Z.

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Pellé, F.

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Poelman, D.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Poleman, D.

Portal, G.

G. Portal, “Review of the principal materials available for thermoluminescent dosimetry,” Radiat. Prot. Dosimetry 17, 351–357 (1986).

Priolkar, K.

Priolkar, K. R.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Richard, C.

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

Rodríguez Burbano, D. C.

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

Scherman, D.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Seguin, J.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Sharma, S. K.

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

Shibahara, Y.

K. Takahashi, J. Miyahara, and Y. Shibahara, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc. 132(6), 1492–1494 (1985).
[Crossref]

Smet, P.

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Smet, P. F.

Sraiki, G.

Takahashi, K.

K. Takahashi, J. Miyahara, and Y. Shibahara, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc. 132(6), 1492–1494 (1985).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga,Al)2O4 Cr, Bi red persistent phosphors considerations of high temperature persistent luminescence and photostimulated persistent luminesence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7849–7855 (2013).
[Crossref]

Teston, E.

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Ueda, J.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Y. Katayama, J. Ueda, and S. Tanabe, “Effect of Bi2O3 doping on persistent luminescence of MgGeO3:Mn2+ phosphor,” Opt. Mater. Express 4(4), 613–623 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga,Al)2O4 Cr, Bi red persistent phosphors considerations of high temperature persistent luminescence and photostimulated persistent luminesence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7849–7855 (2013).
[Crossref]

Van den Eeckhout, K.

Viana, B.

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poleman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si2N8 persistent luminescence nanoparticles,” Opt. Mater. Express 2(3), 261–268 (2012).
[Crossref]

A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, and D. Gourier, “ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness,” Opt. Express 19(11), 10131–10137 (2011).
[Crossref] [PubMed]

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]

Wall, W. A.

W. A. Wall, J. T. Karpick, and B. Di Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” J. Phys. C Solid State Phys. 4(18), 3258–3264 (1971).
[Crossref]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Xie, J.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Xu, J.

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Yamaga, M.

M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
[Crossref]

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

Yan, W.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Yue, G.

M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
[Crossref]

Zhen, Z.

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Zhuang, Y.

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga,Al)2O4 Cr, Bi red persistent phosphors considerations of high temperature persistent luminescence and photostimulated persistent luminesence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7849–7855 (2013).
[Crossref]

Adv. Opt. Mater. (1)

D. C. Rodríguez Burbano, S. K. Sharma, P. Dorenbos, B. Viana, and J. A. Capobianco, “Persistent and Photostimulated Red Emission in CaS:Eu2+,Dy3+ Nanophosphors,” Adv. Opt. Mater. 3(4), 551–557 (2015).
[Crossref]

Appl. Phys. B (1)

M. Yamaga, B. Henderson, K. P. O’Donnell, and G. Yue, “Temperature dependence of the lifetime of Cr 3 + luminescence in garnet crystals II. The case of YGG,” Appl. Phys. B 51, 132–136 (1990).
[Crossref]

Appl. Phys. Express (1)

J. Xu, J. Ueda, Y. Zhuang, B. Viana, and S. Tanabe, “Y3Al5−xGaxO12:Cr3+: A novel red persistent phosphor with high brightness,” Appl. Phys. Express 8(4), 042602 (2015).
[Crossref]

Chem. Mater. (1)

A. Bessière, S. K. Sharma, N. Basavaraju, K. R. Priolkar, L. Binet, B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, “Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate,” Chem. Mater. 26(3), 1365–1373 (2014).
[Crossref]

J. Chem. Phys. (1)

P. Avouris and T. N. Morgan, “A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn,” J. Chem. Phys. 74(8), 4347–4355 (1981).
[Crossref]

J. Electrochem. Soc. (2)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

K. Takahashi, J. Miyahara, and Y. Shibahara, “Photostimulated luminescence (PSL) and color centers in BaFX:Eu2+ (X = Cl, Br, I) phosphors,” J. Electrochem. Soc. 132(6), 1492–1494 (1985).
[Crossref]

J. Lumin. (1)

P. Dorenbos, “Electronic structure and optical properties of the lanthanide activated RE3(Al1-xGax)5O12 (RE=Gd, Y, Lu) garnet compounds,” J. Lumin. 134, 310–318 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Zhuang, J. Ueda, and S. Tanabe, “Tunable trap depth in Zn(Ga,Al)2O4 Cr, Bi red persistent phosphors considerations of high temperature persistent luminescence and photostimulated persistent luminesence,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(47), 7849–7855 (2013).
[Crossref]

J. Phys. C Solid State Phys. (3)

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys. 7(12), 2241–2248 (1974).
[Crossref]

B. Henderson, A. Marshall, M. Yamaga, K. P. O’Donnell, and B. Cockayne, “The temperature dependence of Cr3+ photoluminescence in some garnet crystals,” J. Phys. C Solid State Phys. 21(36), 6187–6198 (1988).
[Crossref]

W. A. Wall, J. T. Karpick, and B. Di Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” J. Phys. C Solid State Phys. 4(18), 3258–3264 (1971).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Dobrowolska, A. J. J. Bos, and P. Dorenbos, “Electron tunnelling phenomena in YPO4 : Ce,Ln (Ln = Er, Ho, Nd, Dy),” J. Phys. D Appl. Phys. 47(33), 335301 (2014).
[Crossref]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Maldiney, A. Bessière, J. Seguin, E. Teston, S. K. Sharma, B. Viana, A. J. J. Bos, P. Dorenbos, M. Bessodes, D. Gourier, D. Scherman, and C. Richard, “The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells,” Nat. Mater. 13(4), 418–426 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

Y. Zhuang, Y. Katayama, J. Ueda, and S. Tanabe, “A brief review on red to near-infrared persistent luminescence in transition-metal-activated phosphors,” Opt. Mater. 36(11), 1907–1912 (2014).
[Crossref]

Opt. Mater. Express (2)

Phys. Rev. B (1)

K. Van den Eeckhout, A. J. J. Bos, D. Poelman, and P. Smet, “Revealing trap depth distributions in persistent phosphors,” Phys. Rev. B 87(4), 045126 (2013).
[Crossref]

Phys. Rev. Lett. (1)

F. Liu, Y. Liang, and Z. Pan, “Detection of up-converted persistent luminescence in the near infrared emitted by the Zn₃Ga₂GeO₈:Cr³⁺, Yb³⁺, Er³⁺ phosphor,” Phys. Rev. Lett. 113(17), 177401 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Q. le Masne de Chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean, J.-P. Jolivet, D. Gourier, M. Bessodes, and D. Scherman, “Nanoprobes with near-infrared persistent luminescence for in vivo imaging,” Proc. Natl. Acad. Sci. U.S.A. 104(22), 9266–9271 (2007).
[Crossref] [PubMed]

Radiat. Meas. (1)

A. Lecointre, A. Bessière, B. Viana, and D. Gourier, “Red persistent luminescent silicate nanoparticles,” Radiat. Meas. 45(3-6), 497–499 (2010).
[Crossref]

Radiat. Prot. Dosimetry (1)

G. Portal, “Review of the principal materials available for thermoluminescent dosimetry,” Radiat. Prot. Dosimetry 17, 351–357 (1986).

Sci. Rep. (1)

F. Liu, W. Yan, Y.-J. Chuang, Z. Zhen, J. Xie, and Z. Pan, “Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8,” Sci. Rep. 3, 1554 (2013).
[Crossref] [PubMed]

Scr. Mater. (1)

J. Xu, J. Ueda, K. Kuroishi, and S. Tanabe, “Fabrication of Ce3+–Cr3+ co-doped yttrium aluminium gallium garnet transparent ceramic phosphors with super long persistent luminescence,” Scr. Mater. 102, 47–50 (2015).
[Crossref]

Other (1)

S. W. S. McKeever, Thermoluminescence of Solids, Cambridge Solid State Science Series (Cambridge University Press, Cambridge, 1988), p. 392.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 PLE spectrum monitoring at 690 nm and PL spectrum under 455 nm excitation of the YAGG:Cr3+ at room temperature.
Fig. 2
Fig. 2 Temperature dependence of PL spectra at different temperatures from 10 K to 600 K. Inserted figure shows integrated PL intensity in the range from 597 nm to 896 nm.
Fig. 3
Fig. 3 TSL glow curves after different wavelength excitations, 254 nm, 455 nm and 625 nm. All glow curves measured just after stopping excitation light.
Fig. 4
Fig. 4 TSL glow curves after 254 nm excitations for 5 min with different waiting time and temperature, excitation at 10 K with 1 h wait-time (Dashed curve) and excitation at 300 K with 2 h wait-time (Solid curve).
Fig. 5
Fig. 5 TSL glow curve measured 1 h after 254 nm excitation for 5 min at 10 K (a) and TSL glow curves measured after 254 nm excitation for 5 min and subsequent photostimulation at 10 K for 1 h by (b)977 nm (1.27 eV), (c) 808 nm(1.53 eV) and (d) 625 nm (1.98 eV) (upper figure) excitations. Curves in lower figure are each subtraction curves from the curve (a), normalized with respect to the difference measured for peak (I) intensity.
Fig. 6
Fig. 6 Photostimulation photon energy dependence on TSL glow curves after detrapping the shallower traps in YAGG:Cr3+. After 254 nm excitation for 5 min at 300 K, sample temperature was kept at 300 K for 2 h, then cooled down to 120 K, and kept 1 h at this temperature for waiting or photostimulation before heating. The TSL glow curves in Fig. 5 are plotted as references.
Fig. 7
Fig. 7 Explanation of persistent luminescence, photostimulated luminescence and photostimulation induced persistent luminescence in the YAGG:Cr3+. Energy level diagram corresponds to Cr3+ states before releasing an electron and after capturing an electron (B, C, D, E). The red arrow in Part (D) represents 625 nm photostimulation.
Fig. 8
Fig. 8 Persistent luminescence after 5 min UV excitation and following photostimulated persistent luminescence after 1 min red photostimulation.

Tables (1)

Tables Icon

Table 1 TSL glow peak temperature, Tm (K) and trap depth Etrap (eV) estimated by initial rise method. (I) and (II) represent peaks observed in classical TSL measurement. (i), (ii) and (iii) are trap depths measured after (i) 1.98 eV, (ii) 1.53eV and (iii) 1.27eV photostimulation induced after detrapping the shallower traps at ambient temperature.

Metrics