Abstract

In this paper, we investigate the lasing behavior of holographic polymer dispersed liquid crystals (H-PDLCs) filled in capillary tubes (CTs). The emission properties from CTs with various core diameters are explored experimentally. The experimental results show that the smallest threshold is 19.4 μJ/pulse in CTs III (300 μm) corresponding to the largest FWHM 0.42 nm. The minimum FWHM is 0.29 nm in CTs I (75 μm) corresponding to largest threshold 31.5 μJ/pulse. According to experimental results and theoretical analysis, the different lasing behaviors from various core diameters of CTs are mainly due to the effect of phase separation between LC-rich and polymer-rich area during exposure. The temperature effects on lasing properties of H-PDLC in CTs were also investigated. Our work verifies the possibility to achieve miniature laser devices in cylindrical confinement structures, such as CT, hollow-fiber or photonic crystal fiber, and extends the applicable scope of H-PDLC.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Platinum-scatterer-based random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes

Jianlong Wang, Yating Zhang, Mingxuan Cao, Xiaoxian Song, Yongli Che, Haiting Zhang, Heng Zhang, and Jianquan Yao
Appl. Opt. 55(21) 5702-5706 (2016)

Spatial angle dependent lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals

D. Luo, H. T. Dai, H. V. Demir, X. W. Sun, H. Z. Yang, and W. Ji
Opt. Express 20(8) 9058-9063 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
    [Crossref]
  2. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
    [Crossref]
  3. S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
    [Crossref]
  4. Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
    [Crossref] [PubMed]
  5. F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
    [Crossref]
  6. W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
    [Crossref]
  7. Y. Nagai, R. Fujimura, and K. Kajikawa, “Core-resonance cylindrical whispering gallery mode laser of dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 30(8), 2233–2239 (2013).
    [Crossref]
  8. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
    [Crossref]
  9. J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
    [Crossref] [PubMed]
  10. A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
    [Crossref] [PubMed]
  11. J. Kim, J. H. Suh, B. Y. Lee, S. U. Kim, and S. D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
    [Crossref] [PubMed]
  12. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
    [Crossref]
  13. W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
    [Crossref] [PubMed]
  14. S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
    [Crossref] [PubMed]
  15. J. H. Lin and Y. L. Hsiao, “Manipulation of the resonance characteristics of random lasers from dye-doped polymer-dispersed liquid crystals in capillary tubes,” Opt. Mater. Express 4(8), 1555–1563 (2014).
    [Crossref]
  16. C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, “All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets,” Opt. Express 18(3), 2406–2412 (2010).
    [Crossref] [PubMed]
  17. Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
    [Crossref]
  18. Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
    [Crossref]
  19. W. K. Choi and Y. M. Li, “Vertically-Aligned Polymer Stabilized Liquid Crystals (VA-PSLC) with a Curing Voltage for Fast-Response Wavelength-Tuning Applications,” Mol. Cryst. Liq. Cryst. 613(1), 45–50 (2015).
    [Crossref]
  20. L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
    [Crossref]
  21. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
    [Crossref] [PubMed]
  22. M. S. Li, A. Y. G. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
    [Crossref] [PubMed]
  23. Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
    [Crossref]
  24. D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
    [Crossref]
  25. K.-Y. Yu, S.-H. Chang, C.-R. Lee, T.-Y. Hsu, and C.-T. Kuo, “Thermally tunable liquid crystal distributed feedback laser based on a polymer grating with nanogrooves fabricated by nanoimprint lithography,” Opt. Mater. Express 4(2), 234–240 (2014).
    [Crossref]
  26. H. P. Tong, Y. R. Li, J. D. Lin, and C. R. Lee, “All-optically controllable distributed feedback laser in a dye-doped holographic polymer-dispersed liquid crystal grating with a photoisomerizable dye,” Opt. Express 18(3), 2613–2620 (2010).
    [Crossref] [PubMed]

2016 (1)

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

2015 (4)

J. Etxebarria, J. Ortega, C. L. Folcia, G. Sanz-Enguita, and I. Aramburu, “Thermally induced light-scattering effects as responsible for the degradation of cholesteric liquid crystal lasers,” Opt. Lett. 40(7), 1262–1265 (2015).
[Crossref] [PubMed]

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref] [PubMed]

J. Kim, J. H. Suh, B. Y. Lee, S. U. Kim, and S. D. Lee, “Optically switchable grating based on dye-doped ferroelectric liquid crystal with high efficiency,” Opt. Express 23(10), 12619–12627 (2015).
[Crossref] [PubMed]

W. K. Choi and Y. M. Li, “Vertically-Aligned Polymer Stabilized Liquid Crystals (VA-PSLC) with a Curing Voltage for Fast-Response Wavelength-Tuning Applications,” Mol. Cryst. Liq. Cryst. 613(1), 45–50 (2015).
[Crossref]

2014 (3)

2013 (3)

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Y. Nagai, R. Fujimura, and K. Kajikawa, “Core-resonance cylindrical whispering gallery mode laser of dye-doped nematic liquid crystal,” J. Opt. Soc. Am. B 30(8), 2233–2239 (2013).
[Crossref]

2012 (2)

Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
[Crossref]

M. S. Li, A. Y. G. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
[Crossref] [PubMed]

2010 (3)

2009 (2)

Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[Crossref] [PubMed]

Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
[Crossref]

2007 (4)

L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
[Crossref]

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

2006 (2)

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

2005 (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

2002 (1)

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Aramburu, I.

Bian, H. T.

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

Cao, W.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Cao, Z. L.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Chang, S. H.

Chang, S.-H.

Chang, Y. M.

Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
[Crossref]

Chao, Z. X.

L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
[Crossref]

Choi, S. W.

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Choi, W. K.

W. K. Choi and Y. M. Li, “Vertically-Aligned Polymer Stabilized Liquid Crystals (VA-PSLC) with a Curing Voltage for Fast-Response Wavelength-Tuning Applications,” Mol. Cryst. Liq. Cryst. 613(1), 45–50 (2015).
[Crossref]

Chu, S. C.

Coles, H. J.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Dai, H. T.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

Demir, H. V.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

Diao, Z. H.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Elim, H. I.

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Etxebarria, J.

Folcia, C. L.

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Fuh, A. Y. G.

Fujii, A.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Fujimura, R.

Gim, M. J.

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Guo, C. H.

Hou, Ch. F.

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

Hsiao, V. K. S.

Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
[Crossref]

Hsiao, Y. L.

Hsu, T.-Y.

Hsu, Y. J.

Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
[Crossref]

Huang, W. B.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Huang, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Huang, Y. P.

Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
[Crossref]

Hur, S. T.

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Ji, W.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Kajikawa, K.

Kim, J.

Kim, S. U.

Kuo, C.-T.

Lee, B. R.

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Lee, B. Y.

Lee, C. R.

Lee, C.-R.

Lee, S. D.

Lee, W.

Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
[Crossref]

Li, H. P.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Li, M. S.

Li, Y. M.

W. K. Choi and Y. M. Li, “Vertically-Aligned Polymer Stabilized Liquid Crystals (VA-PSLC) with a Curing Voltage for Fast-Response Wavelength-Tuning Applications,” Mol. Cryst. Liq. Cryst. 613(1), 45–50 (2015).
[Crossref]

Li, Y. R.

Lin, J. D.

Lin, J. H.

Lin, S. H.

Liu, J. H.

M. S. Li, A. Y. G. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
[Crossref] [PubMed]

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Liu, L.

Liu, L. Y.

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Liu, Y. G.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Liu, Y. J.

Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
[Crossref]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Luo, D.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

Ma, J.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Matsuhisa, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Mi, J.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Mo, T. S.

Morris, S. M.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Mu, Q. Q.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Muñoz, A.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Murukeshan, V. M.

L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
[Crossref]

Nagai, H.

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref] [PubMed]

Nagai, Y.

Ortega, J.

Ozaki, M.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Ozaki, R.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Palffy-Muhoray, P.

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref] [PubMed]

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Park, K. W.

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Pei, Y. B.

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

Peng, Z. H.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Sanz-Enguita, G.

Seah, L. K.

L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
[Crossref]

Shum, P.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Song, M. H.

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Song, Q.

Song, Q. H.

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Su, Y. C.

Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
[Crossref]

Suh, J. H.

Sun, X. D.

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

Sun, X. W.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Taheri, B.

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Takao, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Tong, H. P.

Tsai, T. Y.

Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
[Crossref]

Urayama, K.

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref] [PubMed]

Varanytsia, A.

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref] [PubMed]

Wang, F.

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Wang, P.

L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
[Crossref]

Wang, Z.

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

Wu, S. T.

M. S. Li, A. Y. G. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
[Crossref] [PubMed]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Wu, Y.

Xiao, S. M.

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Xu, L.

Q. Song, L. Liu, L. Xu, Y. Wu, and Z. Wang, “Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity,” Opt. Lett. 34(3), 298–300 (2009).
[Crossref] [PubMed]

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Xuan, L.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Yang, H. Z.

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

Yao, F. F.

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

Yao, L. S.

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Yu, K.-Y.

Zhang, X. H.

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

Zhou, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Adv. Mater. (1)

S. T. Hur, B. R. Lee, M. J. Gim, K. W. Park, M. H. Song, and S. W. Choi, “Liquid-crystalline blue phase laser with widely tunable wavelength,” Adv. Mater. 25(21), 3002–3006 (2013).
[Crossref] [PubMed]

Appl. Phys. Express (1)

W. B. Huang, Z. H. Diao, L. S. Yao, Z. L. Cao, Y. G. Liu, J. Ma, and L. Xuan, “Electrically Tunable Distributed Feedback Laser Emission from Scaffolding Morphologic Holographic Polymer Dispersed Liquid Crystal Grating,” Appl. Phys. Express 6(2), 022702 (2013).
[Crossref]

Appl. Phys. Lett. (4)

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90(9), 091114 (2007).
[Crossref]

Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Electronic control of nonresonant random lasing from a dye-doped smectic A (*) liquid crystal scattering device,” Appl. Phys. Lett. 86(14), 141103 (2005).
[Crossref]

Y. J. Liu, X. W. Sun, P. Shum, H. P. Li, J. Mi, W. Ji, and X. H. Zhang, “Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings,” Appl. Phys. Lett. 88(6), 061107 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

S. M. Xiao, Q. H. Song, F. Wang, L. Y. Liu, J. H. Liu, and L. Xu, “Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides,” IEEE J. Quantum Electron. 43(5–6), 407–410 (2007).
[Crossref]

Int. J. Optomechatronics (1)

L. K. Seah, V. M. Murukeshan, P. Wang, and Z. X. Chao, “Tunable external cavity laser based on liquid crystal fabry-perot interferometer and liquid crystal phase shifter,” Int. J. Optomechatronics 1(1), 63–72 (2007).
[Crossref]

J. Appl. Phys. (1)

D. Luo, X. W. Sun, H. T. Dai, H. V. Demir, H. Z. Yang, and W. Ji, “Temperature effect on the lasing from a dye-doped two-dimensional hexagonal photonic crystal made of holographic polymer-dispersed liquid crystals,” J. Appl. Phys. 108(1), 013106 (2010).
[Crossref]

J. Mater. Chem. (1)

Y. J. Liu, Y. C. Su, Y. J. Hsu, and V. K. S. Hsiao, “Light-induced spectral shifting generated from azo-dye doped holographic 2D gratings,” J. Mater. Chem. 22(28), 14191–14195 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Liq. Cryst. (1)

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

W. K. Choi and Y. M. Li, “Vertically-Aligned Polymer Stabilized Liquid Crystals (VA-PSLC) with a Curing Voltage for Fast-Response Wavelength-Tuning Applications,” Mol. Cryst. Liq. Cryst. 613(1), 45–50 (2015).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

Y. P. Huang, Y. M. Chang, T. Y. Tsai, and W. Lee, “H-PDLC/Clay Nanocomposites,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 512(1), 167–178 (2009).
[Crossref]

Nat. Mater. (2)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007).
[Crossref] [PubMed]

W. Cao, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1(2), 111–113 (2002).
[Crossref] [PubMed]

Opt. Commun. (1)

F. F. Yao, H. T. Bian, Y. B. Pei, Ch. F. Hou, and X. D. Sun, “Behaviors of random laser in dye-doped nematic liquid crystals,” Opt. Commun. 359, 15–19 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Sci. Rep. (1)

A. Varanytsia, H. Nagai, K. Urayama, and P. Palffy-Muhoray, “Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain,” Sci. Rep. 5, 17739 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic to fabricate the grating structures in capillary tubes.
Fig. 2
Fig. 2 (a) Grating image in the capillary tube under the polarization optical microscope (POM) (b) SEM image showing the surface morphology of the dye-doped H-PDLC grating.
Fig. 3
Fig. 3 The absorption and fluorescence emission spectra of DCM doped HPDLC films.
Fig. 4
Fig. 4 Schematic diagram of the experimental setup for emission laser in dye doped HPDLC, which provides the feedback for laser oscillations.
Fig. 5
Fig. 5 Evolution of the emission spectra with various pump energy from H-PDLCs inside the single core capillary with core diameter of (a) 75 μm (CT I), (c) 100 μm (CT II), and (e) 300 μm (CT III); relative peak intensities and FWHMs of emission spikes with various pump energy from (b) CT I, (d) CT II, and (f) CT III.
Fig. 6
Fig. 6 Schematic of geometric relation between pumped light and capillary for (a) CT I, (b) CT II and (c) CT III and the recorded experimental images (bottom row).
Fig. 7
Fig. 7 The temperature effects on the lasing performance of H-PDLC in CTs. (a) denotes the lasing peaks with varied temperatures and (b) shows the wavelengths and intensities of emission lasers.

Tables (1)

Tables Icon

Table 1 the peak wavelength, FWHM,and the estimated Q-factor from capillary tubes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ r 2sin θ 2
λ las =2 n eff Λ/m
n eff = [ n p 2 × φ p + n eff_LC 2 × φ LC +( 2 n o 2 /3+ n e 2 /3 )×( 1 φ p φ LC ) ] 1/2
Q= λ las Δλ

Metrics