Abstract

In this study we developed a new method for coating gold nanorods (GNRs) with poly-(3,4-ethylenedioxythiophene) (PEDOT). The optical properties of this new composite were tested by Monte Carlo (MC) simulation and diffusion reflection (DR), showing a unique surface plasmon resonance (SPR) and a more obvious change in the reflected light intensity. Our results indicate that this composite has great potential as a contrast agent for molecular imaging in biomedical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods

Yanjie Wang, Eric M. Strohm, Yang Sun, Zhaoxia Wang, Yuanyi Zheng, Zhigang Wang, and Michael C. Kolios
Biomed. Opt. Express 7(10) 4125-4138 (2016)

Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(11) 1986-1991 (2013)

Multiplex photoacoustic molecular imaging using targeted silica-coated gold nanorods

Carolyn L. Bayer, Yun-Sheng Chen, Seungsoo Kim, Srivalleesha Mallidi, Konstantin Sokolov, and Stanislav Emelianov
Biomed. Opt. Express 2(7) 1828-1835 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science 297(5586), 1536–1540 (2002).
    [Crossref] [PubMed]
  2. N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
    [Crossref] [PubMed]
  3. R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
    [Crossref] [PubMed]
  4. S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
    [Crossref] [PubMed]
  5. M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
    [Crossref] [PubMed]
  6. N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
    [Crossref]
  7. R. Ankri, H. Taitelbaum, and D. Fixler, “Reflected light intensity profile of two-layer tissues: phantom experiments,” J. Biomed. Opt. 16, 085001 (2011).
    [Crossref]
  8. R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
    [Crossref]
  9. R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
    [Crossref] [PubMed]
  10. R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
    [PubMed]
  11. D. Fixler and R. Ankri, “Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
    [Crossref] [PubMed]
  12. R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
    [Crossref] [PubMed]
  13. M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
    [Crossref] [PubMed]
  14. A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
    [Crossref] [PubMed]
  15. M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
    [Crossref] [PubMed]
  16. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [Crossref] [PubMed]
  17. K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
    [PubMed]
  18. Y. Hu, “Aggregation of gold nanoparticles and DNA damage by atomic force microscopy,” J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 180–184 (2014).
  19. S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
    [Crossref]
  20. E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
    [Crossref] [PubMed]
  21. J. M. S. Vinod Selvaganesh, K. L. N. Phani, and V. Yegnaraman, “Chemical Synthesis of PEDOT–Au Nanocomposite,” Nanoscale Res. Lett. 2(11), 546–549 (2007).
    [Crossref]
  22. S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
    [Crossref] [PubMed]
  23. Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
    [Crossref]
  24. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
    [Crossref]
  25. C. Wu and Q. H. Xu, “Stable and functionable mesoporous silica-coated Gold Nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors,” Langmuir 25(16), 9441–9446 (2009).
    [Crossref] [PubMed]
  26. K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
    [Crossref]

2015 (1)

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Hu, “Aggregation of gold nanoparticles and DNA damage by atomic force microscopy,” J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 180–184 (2014).

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

2013 (1)

D. Fixler and R. Ankri, “Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

2012 (3)

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

2011 (2)

R. Ankri, H. Taitelbaum, and D. Fixler, “Reflected light intensity profile of two-layer tissues: phantom experiments,” J. Biomed. Opt. 16, 085001 (2011).
[Crossref]

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

2009 (5)

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

C. Wu and Q. H. Xu, “Stable and functionable mesoporous silica-coated Gold Nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors,” Langmuir 25(16), 9441–9446 (2009).
[Crossref] [PubMed]

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

2007 (3)

J. M. S. Vinod Selvaganesh, K. L. N. Phani, and V. Yegnaraman, “Chemical Synthesis of PEDOT–Au Nanocomposite,” Nanoscale Res. Lett. 2(11), 546–549 (2007).
[Crossref]

S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
[Crossref] [PubMed]

S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
[Crossref] [PubMed]

2006 (2)

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

2005 (2)

N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

2004 (1)

Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
[Crossref]

2003 (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

2002 (1)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

2001 (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

Ankri, R.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

D. Fixler and R. Ankri, “Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

R. Ankri, H. Taitelbaum, and D. Fixler, “Reflected light intensity profile of two-layer tissues: phantom experiments,” J. Biomed. Opt. 16, 085001 (2011).
[Crossref]

Barnoy, E.

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

Cao, Y. C.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Chen, P.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Chowdhury, M. H.

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Conjusteau, A.

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

Copland, J. A.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

Duadi, H.

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

Eghtedari, M.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

Ermolinsky, B.

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

Fixler, D.

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

D. Fixler and R. Ankri, “Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

R. Ankri, H. Taitelbaum, and D. Fixler, “Reflected light intensity profile of two-layer tissues: phantom experiments,” J. Biomed. Opt. 16, 085001 (2011).
[Crossref]

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Fu, Y.

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Hochhauser, E.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Hu, X.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Hu, Y.

Y. Hu, “Aggregation of gold nanoparticles and DNA damage by atomic force microscopy,” J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 180–184 (2014).

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Jin, R.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Kazansky, A.

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

Kim, G. J.

S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
[Crossref] [PubMed]

Kirchmeyer, S.

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

Kornowski, R.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Kumar, C. S.

S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
[Crossref] [PubMed]

Kumar, S. S.

S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
[Crossref] [PubMed]

Lakowicz, J. R.

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

Lee, Y.

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

Leshem-Lev, D.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Lev, E. I.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

Li, Y.

Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
[Crossref]

Liopo, A.

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

Liopo, A. V.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

Madhavan, J.

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

Mallia, J.

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

Mathews, A.

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

Mathiyarasu, J.

S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
[Crossref] [PubMed]

Mirkin, C. A.

N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Motamedi, M.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

Motiei, M.

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Nayhoz, T.

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

Nie, S.

S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
[Crossref] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Noh, J.

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

Nowaczyk, K.

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Oraevsky, A.

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

Oraevsky, A. A.

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

Pang, R.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Peretz, V.

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Phani, K. L.

S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
[Crossref] [PubMed]

Phani, K. L. N.

J. M. S. Vinod Selvaganesh, K. L. N. Phani, and V. Yegnaraman, “Chemical Synthesis of PEDOT–Au Nanocomposite,” Nanoscale Res. Lett. 2(11), 546–549 (2007).
[Crossref]

Popovtzer, R.

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

Ray, K.

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Reddy, K. R.

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

Reuter, K.

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

Rosi, N. L.

N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

Ryu, K. S.

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

Sebastian, P.

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

Simons, J. W.

S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
[Crossref] [PubMed]

Sin, B. C.

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

Subhash, N.

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

Sun, C.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Sun, X.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Szmacinski, H.

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Taitelbaum, H.

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

R. Ankri, H. Taitelbaum, and D. Fixler, “Reflected light intensity profile of two-layer tissues: phantom experiments,” J. Biomed. Opt. 16, 085001 (2011).
[Crossref]

Tan, Y.

Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
[Crossref]

Thomas, S. S.

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

Tsyboulski, D.

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

Vinod Selvaganesh, J. M. S.

J. M. S. Vinod Selvaganesh, K. L. N. Phani, and V. Yegnaraman, “Chemical Synthesis of PEDOT–Au Nanocomposite,” Nanoscale Res. Lett. 2(11), 546–549 (2007).
[Crossref]

Wu, C.

C. Wu and Q. H. Xu, “Stable and functionable mesoporous silica-coated Gold Nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors,” Langmuir 25(16), 9441–9446 (2009).
[Crossref] [PubMed]

Xiao, S.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Xiaohong Li, Y. L.

Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
[Crossref]

Xing, Y.

S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
[Crossref] [PubMed]

Xu, Q. H.

C. Wu and Q. H. Xu, “Stable and functionable mesoporous silica-coated Gold Nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors,” Langmuir 25(16), 9441–9446 (2009).
[Crossref] [PubMed]

Yan, J.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Yang, C.

Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
[Crossref]

Yegnaraman, V.

J. M. S. Vinod Selvaganesh, K. L. N. Phani, and V. Yegnaraman, “Chemical Synthesis of PEDOT–Au Nanocomposite,” Nanoscale Res. Lett. 2(11), 546–549 (2007).
[Crossref]

Zhang, J.

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Zhou, S.

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

M. A. El-Sayed, “Some interesting properties of metals confined in time and nanometer space of different shapes,” Acc. Chem. Res. 34(4), 257–264 (2001).
[Crossref] [PubMed]

Adv. Biochem. Eng. Biotechnol. (1)

K. Ray, M. H. Chowdhury, J. Zhang, Y. Fu, H. Szmacinski, K. Nowaczyk, and J. R. Lakowicz, “Plasmon-controlled fluorescence towards high-sensitivity optical sensing,” Adv. Biochem. Eng. Biotechnol. 116, 29–72 (2009).
[PubMed]

Annu. Rev. Biomed. Eng. (1)

S. Nie, Y. Xing, G. J. Kim, and J. W. Simons, “Nanotechnology Applications in Cancer,” Annu. Rev. Biomed. Eng. 9(1), 257–288 (2007).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

R. Pang, X. Hu, S. Zhou, C. Sun, J. Yan, X. Sun, S. Xiao, and P. Chen, “Preparation of multi-shelled conductive polymer hollow microspheres by using Fe 3 O 4 hollow spheres as sacrificial templates,” Chem. Commun. (Camb.) 50(83), 12493–12496 (2014).
[Crossref] [PubMed]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15(10), 1957–1962 (2003).
[Crossref]

Chem. Rev. (1)

N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics,” Chem. Rev. 105(4), 1547–1562 (2005).
[Crossref] [PubMed]

Int. J. Nanomedicine (1)

R. Ankri, V. Peretz, M. Motiei, R. Popovtzer, and D. Fixler, “A new method for cancer detection based on diffusion reflection measurements of targeted gold nanorods,” Int. J. Nanomedicine 7, 449–455 (2012).
[PubMed]

J. Biomed. Opt. (3)

D. Fixler and R. Ankri, “Subcutaneous gold nanorods [corrected] detection with diffusion reflection measurement,” J. Biomed. Opt. 18(6), 061226 (2013).
[Crossref] [PubMed]

N. Subhash, J. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/ R575 of oxygenated hemoglobin bands,” J. Biomed. Opt. 11, 014018 (2006).
[Crossref]

R. Ankri, H. Taitelbaum, and D. Fixler, “Reflected light intensity profile of two-layer tissues: phantom experiments,” J. Biomed. Opt. 16, 085001 (2011).
[Crossref]

J. Biophotonics (1)

R. Ankri, H. Duadi, M. Motiei, and D. Fixler, “In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods-a quantitative study,” J. Biophotonics 5(3), 263–273 (2012).
[Crossref] [PubMed]

J. Mater. Chem. (1)

S. Kirchmeyer and K. Reuter, “Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene),” J. Mater. Chem. 15(21), 2077–2088 (2005).
[Crossref]

J. Nanomed. Nanotechnol. (1)

A. Liopo, A. Conjusteau, D. Tsyboulski, B. Ermolinsky, A. Kazansky, and A. Oraevsky, “Biocompatible gold nanorod conjugates for preclinical biomedical research,” J. Nanomed. Nanotechnol. S2(01), 001 (2012).
[Crossref] [PubMed]

J. Phys. Chem. B (2)

Y. L. Xiaohong Li, Y. Tan, C. Yang, and Y. Li, “Self-Assembly of Gold Nanoparticles Prepared with 3,4-Ethylenedioxythiophene as Reductant,” J. Phys. Chem. B 108(17), 5192–5199 (2004).
[Crossref]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[Crossref] [PubMed]

J. Wuhan Univ. Technol.-Mat. Sci. Edit. (1)

Y. Hu, “Aggregation of gold nanoparticles and DNA damage by atomic force microscopy,” J. Wuhan Univ. Technol.-Mat. Sci. Edit. 29, 180–184 (2014).

Langmuir (2)

C. Wu and Q. H. Xu, “Stable and functionable mesoporous silica-coated Gold Nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors,” Langmuir 25(16), 9441–9446 (2009).
[Crossref] [PubMed]

S. S. Kumar, C. S. Kumar, J. Mathiyarasu, and K. L. Phani, “Stabilized Gold Nanoparticles by Reduction Using 3,4-Ethylenedioxythiophene-Polystyrenesulfonate in Aqueous Solutions: Nanocomposite Formation, Stability, and Application in Catalysis,” Langmuir 23(6), 3401–3408 (2007).
[Crossref] [PubMed]

Nano Lett. (3)

R. Ankri, D. Leshem-Lev, D. Fixler, R. Popovtzer, M. Motiei, R. Kornowski, E. Hochhauser, and E. I. Lev, “Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements,” Nano Lett. 14(5), 2681–2687 (2014).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, “Engineering of Hetero-Functional Gold Nanorods for the in vivo Molecular Targeting of Breast Cancer Cells,” Nano Lett. 9(1), 287–291 (2009).
[Crossref] [PubMed]

Nano Res. (1)

E. Barnoy, D. Fixler, R. Popovtzer, T. Nayhoz, and K. Ray, “An ultra-sensitive dual imaging system of diffusion reflection and fluorescence lifetime imaging microscopy using metal enhanced fluorescence in solid phantoms,” Nano Res. 8(12), 3912–3921 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

J. M. S. Vinod Selvaganesh, K. L. N. Phani, and V. Yegnaraman, “Chemical Synthesis of PEDOT–Au Nanocomposite,” Nanoscale Res. Lett. 2(11), 546–549 (2007).
[Crossref]

Science (1)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Synth. Met. (1)

K. R. Reddy, B. C. Sin, K. S. Ryu, J. Noh, and Y. Lee, “In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: Synthesis, morphology, structure and electrical conductivity,” Synth. Met. 159(19-20), 1934–1939 (2009).
[Crossref]

The Open Optics Journal (1)

R. Ankri, H. Taitelbaum, and D. Fixler, “On Phantom experiments of the photon migration model in tissues,” The Open Optics Journal 5(1), 28–32 (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 MC simulation results of tissues presenting different absorption coefficients, but a constant µs'. Simulated ln( ρ 2 Γ(ρ)) profiles of homogeneous tissues with GNR-PEDOT presenting four absorption coefficients of 0.0115 (diamonds), 0.0126 (squares), 0.018 (triangles) and 0.0227 (circles) mm−1.
Fig. 2
Fig. 2 TEM images of (a) GNSs; (b) PEDOT; (c) GNRs; (d) GNR-PEDOT NPs; (e) UV-vis spectra of GNSs (green), PEDOT (black), GNRs (blue) and GNR-PEDOT NPs (red).
Fig. 3
Fig. 3 Left: FT-IR spectra of the GNR-PEDOT NPs; Right: enlarged image of the 600-1600 nm section.
Fig. 4
Fig. 4 XRD pattern of GNR-PEDOT NPs.
Fig. 5
Fig. 5 DR results from four different phantoms, each denoted by a different color: a water-only base (thin purple line), GNRs with absorption peak at 690nm (red dotted line), GNRs with PEDOT (black line), and GNSs (dashed blue line). Each phantom was measured twice. The light source had a 780nm wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ(ρ)= c 1 (ρ) n exp(μρ)

Metrics