Abstract

A rapid photothermal bacterial inactivation technique has been developed by irradiating near-infrared (NIR) light onto bacterial cells (Escherichia coli, Bacillus subtilis, Exiguobacterium sp. AT1B) deposited on surfaces coated with a dense, random array of nanoporous gold disks (NPGDs). With the use of cell viability tests and SEM imaging results, the complete inactivation of the pathogenic and heat-resistant bacterial model strains is confirmed within ~25 s of irradiation of the NPGD substrate. In addition to irradiation control experiments to prove the efficacy of the bacterial inactivation, thermographic imaging showed an immediate averaged temperature rise above 200 °C within the irradiation spot of the NPGD substrate. The light-gated photothermal effects on the NPGD substrate offers potential applications for antimicrobial and nanotherapeutic devices due to strong light absorption in the tissue optical window, i.e., the NIR wavelengths, and robust morphological structure that can withstand high instantaneous thermal shocks.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feature issue introduction: biophotonic materials and applications

Kwang-Sup Lee, Chantal Andraud, Kaoru Tamada, Konstantin Sokolov, Kenneth T. Kotz, and Gang Zheng
Opt. Mater. Express 6(5) 1747-1750 (2016)

Label-free identification of individual bacteria using Fourier transform light scattering

YoungJu Jo, JaeHwang Jung, Min-hyeok Kim, HyunJoo Park, Suk-Jo Kang, and YongKeun Park
Opt. Express 23(12) 15792-15805 (2015)

Selective detection of bacterial layers with terahertz plasmonic antennas

Audrey Berrier, Martijn C. Schaafsma, Guillaume Nonglaton, Jonas Bergquist, and Jaime Gómez Rivas
Biomed. Opt. Express 3(11) 2937-2949 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
    [Crossref] [PubMed]
  2. R. K. Root, Clinical Infectious Diseases: A Practical Approach (Oxford University Press, 1999).
  3. A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
    [Crossref] [PubMed]
  4. S. S. Block, Disinfection, Sterilization, and Preservation (Lippincott Williams & Wilkins, 2001).
  5. W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
    [Crossref] [PubMed]
  6. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  7. R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
    [Crossref] [PubMed]
  8. E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
    [Crossref]
  9. O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
    [Crossref] [PubMed]
  10. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
    [Crossref] [PubMed]
  11. J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
    [Crossref] [PubMed]
  12. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
    [Crossref]
  13. W. C. Huang, P. J. Tsai, and Y. C. Chen, “Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria,” Nanomedicine (Lond.) 2(6), 777–787 (2007).
    [Crossref] [PubMed]
  14. Y. Zhao and X. Jiang, “Multiple strategies to activate gold nanoparticles as antibiotics,” Nanoscale 5(18), 8340–8350 (2013).
    [Crossref] [PubMed]
  15. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
    [Crossref]
  16. G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
    [Crossref] [PubMed]
  17. J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
    [Crossref] [PubMed]
  18. G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
    [Crossref] [PubMed]
  19. M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W.-C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
    [Crossref] [PubMed]
  20. Y. Zhu, M. Ramasamy, and D. K. Yi, “Antibacterial activity of ordered gold nanorod arrays,” ACS Appl. Mater. Interfaces 6(17), 15078–15085 (2014).
    [PubMed]
  21. S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
    [Crossref]
  22. M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
    [Crossref] [PubMed]
  23. T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
    [Crossref] [PubMed]
  24. K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
    [Crossref]
  25. E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
    [Crossref]
  26. J. L. Edwards, F. F. Busta, and M. L. Speck, “Thermal inactivation characteristics of bacillus subtilis spores at ultrahigh temperatures,” Appl. Microbiol. 13(6), 851–857 (1965).
    [PubMed]
  27. M. L. Droffner and N. Yamamoto, “Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilus and transformation of the thermophilic trait to mesophilic strains,” J. Gen. Microbiol. 131(10), 2789–2794 (1985).
    [PubMed]
  28. F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
    [Crossref] [PubMed]
  29. C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
    [Crossref] [PubMed]
  30. I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
    [Crossref] [PubMed]
  31. F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
    [Crossref] [PubMed]
  32. W.-C. Shih, K. Bechtel, and M. S. Feld, “Noninvasive glucose sensing with Raman spectroscopy,” in Analytical Chemistry of In Vivo Glucose Measurements (John Wiley & Sons, 2009), pp. 391–419.
  33. J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
    [Crossref]
  34. J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
    [Crossref]
  35. Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
    [Crossref] [PubMed]
  36. T. Miyamoto, S. Okano, and N. Kasai, “Inactivation of Escherichia coli endotoxin by soft hydrothermal processing,” Appl. Environ. Microbiol. 75(15), 5058–5063 (2009).
    [Crossref] [PubMed]
  37. B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
    [Crossref] [PubMed]
  38. W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
    [Crossref]

2015 (4)

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W.-C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
[Crossref] [PubMed]

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

2014 (6)

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Y. Zhu, M. Ramasamy, and D. K. Yi, “Antibacterial activity of ordered gold nanorod arrays,” ACS Appl. Mater. Interfaces 6(17), 15078–15085 (2014).
[PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

2013 (5)

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Y. Zhao and X. Jiang, “Multiple strategies to activate gold nanoparticles as antibiotics,” Nanoscale 5(18), 8340–8350 (2013).
[Crossref] [PubMed]

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

2012 (3)

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
[Crossref] [PubMed]

2011 (2)

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

2009 (1)

T. Miyamoto, S. Okano, and N. Kasai, “Inactivation of Escherichia coli endotoxin by soft hydrothermal processing,” Appl. Environ. Microbiol. 75(15), 5058–5063 (2009).
[Crossref] [PubMed]

2008 (4)

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

2007 (1)

W. C. Huang, P. J. Tsai, and Y. C. Chen, “Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria,” Nanomedicine (Lond.) 2(6), 777–787 (2007).
[Crossref] [PubMed]

2006 (2)

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

2003 (2)

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

1991 (1)

B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
[Crossref] [PubMed]

1988 (1)

R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
[Crossref] [PubMed]

1985 (1)

M. L. Droffner and N. Yamamoto, “Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilus and transformation of the thermophilic trait to mesophilic strains,” J. Gen. Microbiol. 131(10), 2789–2794 (1985).
[PubMed]

1965 (1)

J. L. Edwards, F. F. Busta, and M. L. Speck, “Thermal inactivation characteristics of bacillus subtilis spores at ultrahigh temperatures,” Appl. Microbiol. 13(6), 851–857 (1965).
[PubMed]

Advincula, R.

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

Advincula, R. C.

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

Ahmed, F.

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

Arnob, M. M. P.

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Barbastathis, G.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

Brennan, C.

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Brettin, T.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Bruce, D. C.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Busta, F. F.

J. L. Edwards, F. F. Busta, and M. L. Speck, “Thermal inactivation characteristics of bacillus subtilis spores at ultrahigh temperatures,” Appl. Microbiol. 13(6), 851–857 (1965).
[PubMed]

Cai, C.

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

Cappuyns, A. M.

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Centi, S.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Chen, C.-Y.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Chen, S.-Y.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Chen, Y. C.

W. C. Huang, P. J. Tsai, and Y. C. Chen, “Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria,” Nanomedicine (Lond.) 2(6), 777–787 (2007).
[Crossref] [PubMed]

Choi, J. Y.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Copeland, A.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Dalin, E.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Detter, C.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Devlieghere, F.

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Droffner, M. L.

M. L. Droffner and N. Yamamoto, “Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilus and transformation of the thermophilic trait to mesophilic strains,” J. Gen. Microbiol. 131(10), 2789–2794 (1985).
[PubMed]

Du, Y.

Ducel, G.

R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
[Crossref] [PubMed]

Edwards, J. L.

J. L. Edwards, F. F. Busta, and M. L. Speck, “Thermal inactivation characteristics of bacillus subtilis spores at ultrahigh temperatures,” Appl. Microbiol. 13(6), 851–857 (1965).
[PubMed]

Edwards, J. R.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Estillore, N. C.

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

Facilities, P. N. H. S. N.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Fan, Z.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Fridkin, S. K.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Galitovskaya, E. N.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Geeraerd, A. H.

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Gheewala, M.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Glavina del Rio, T.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Gole, A.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

Goodwin, L. A.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Gurfinkel, M.

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

Hamme, A.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Han, C.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Hauser, L. J.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Hendrix, C.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Heo, C.-J.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Hidron, A. I.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Horan, T. C.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Houston, J. P.

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

Huang, C.-C.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Huang, W. C.

W. C. Huang, P. J. Tsai, and Y. C. Chen, “Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria,” Nanomedicine (Lond.) 2(6), 777–787 (2007).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Jamison, A. C.

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

Jang, S. G.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Jeon, Y. B.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

Jiang, X.

Y. Zhao and X. Jiang, “Multiple strategies to activate gold nanoparticles as antibiotics,” Nanoscale 5(18), 8340–8350 (2013).
[Crossref] [PubMed]

Kasai, N.

T. Miyamoto, S. Okano, and N. Kasai, “Inactivation of Escherichia coli endotoxin by soft hydrothermal processing,” Appl. Environ. Microbiol. 75(15), 5058–5063 (2009).
[Crossref] [PubMed]

Kathariou, S.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Kereselidze, T.

R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
[Crossref] [PubMed]

Khan, S. A.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Khantamat, O.

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

Kim, S. K.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Kim, S.-G.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

Kozina, K. V.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Kuo, W.-S.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Kyrpides, N. C.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Land, M. L.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Lapidus, A.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Larimer, F.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Lee, S. Y.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Lee, T. R.

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Leon, A.

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

Li, C.-H.

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Li, M.

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W.-C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Li, W.-M.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Li, Y.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Lucas, S.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Mackey, B. M.

B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
[Crossref] [PubMed]

Mangadlao, J.

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

Mayon-White, R. T.

R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
[Crossref] [PubMed]

Mejías Carpio, I. E.

I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
[Crossref] [PubMed]

Mercer, K. E.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Miles, C. A.

B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
[Crossref] [PubMed]

Miyamoto, T.

T. Miyamoto, S. Okano, and N. Kasai, “Inactivation of Escherichia coli endotoxin by soft hydrothermal processing,” Appl. Environ. Microbiol. 75(15), 5058–5063 (2009).
[Crossref] [PubMed]

Mohan, C.

Motwani, P.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Murphy, C. J.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

Norman, R. S.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

Okano, S.

T. Miyamoto, S. Okano, and N. Kasai, “Inactivation of Escherichia coli endotoxin by soft hydrothermal processing,” Appl. Environ. Microbiol. 75(15), 5058–5063 (2009).
[Crossref] [PubMed]

Ovchinnikova, G.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Pangilinan, K. D.

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

Parsons, S. E.

B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
[Crossref] [PubMed]

Parvez Arnob, M. M.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Patel, J.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Paterson, A.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Petrov, P. O.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Pini, R.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Pitluck, S.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Pollock, D. A.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Pustovalov, V. K.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

Qi, J.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Raja, B.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Ramaley, R. F.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Ramasamy, M.

Y. Zhu, M. Ramasamy, and D. K. Yi, “Antibacterial activity of ordered gold nanorod arrays,” ACS Appl. Mater. Interfaces 6(17), 15078–15085 (2014).
[PubMed]

Ratto, F.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Ray, P. C.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Richardson, P.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Rodrigues, D. F.

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
[Crossref] [PubMed]

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Sabo-Attwood, T. L.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

Santos, C. M.

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
[Crossref] [PubMed]

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

Santos, G. M.

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

Sardar, D.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Saunders, E.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Senapati, D.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Seo, T. S.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Sevick-Muraca, E. M.

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

Seymour, D. A.

B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
[Crossref] [PubMed]

Shih, W. C.

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

Shih, W.-C.

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W.-C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

Sievert, D. M.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Singh, A. K.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Smeltzer, M. S.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Smetannikov, A. S.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

Speck, M. L.

J. L. Edwards, F. F. Busta, and M. L. Speck, “Thermal inactivation characteristics of bacillus subtilis spores at ultrahigh temperatures,” Appl. Microbiol. 13(6), 851–857 (1965).
[PubMed]

Stone, J. W.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

Strych, U.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Sun, C.-K.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Sun, P.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Team, N. H. S. N.

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

Thompson, A. B.

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

Tice, H.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Tiedje, J. M.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Tikomirov, E.

R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
[Crossref] [PubMed]

Tsai, P. J.

W. C. Huang, P. J. Tsai, and Y. C. Chen, “Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria,” Nanomedicine (Lond.) 2(6), 777–787 (2007).
[Crossref] [PubMed]

Tuchin, V. V.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Tuchina, E. S.

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

Van Derlinden, E.

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Van Impe, J. F.

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Velliou, E. G.

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Vishnivetskaya, T. A.

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

Wei, X.

I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
[Crossref] [PubMed]

Willson, R. C.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

Wolfe, J. C.

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

Won Shim, J.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Wong, C. W.

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

Wu, C.-M.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Yamamoto, N.

M. L. Droffner and N. Yamamoto, “Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilus and transformation of the thermophilic trait to mesophilic strains,” J. Gen. Microbiol. 131(10), 2789–2794 (1985).
[PubMed]

Yang, S.-M.

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Yang, Z.-S.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Yao, Y.

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Yeh, C.-S.

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Yi, D. K.

Y. Zhu, M. Ramasamy, and D. K. Yi, “Antibacterial activity of ordered gold nanorod arrays,” ACS Appl. Mater. Interfaces 6(17), 15078–15085 (2014).
[PubMed]

Yu, F.

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

Yust, B.

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Zeng, J.

M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W.-C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
[Crossref] [PubMed]

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Zhao, F.

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

M. Li, Y. Du, F. Zhao, J. Zeng, C. Mohan, and W.-C. Shih, “Reagent- and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS),” Biomed. Opt. Express 6(3), 849–858 (2015).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Zhao, Y.

Y. Zhao and X. Jiang, “Multiple strategies to activate gold nanoparticles as antibiotics,” Nanoscale 5(18), 8340–8350 (2013).
[Crossref] [PubMed]

Zharov, V. P.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, M. Ramasamy, and D. K. Yi, “Antibacterial activity of ordered gold nanorod arrays,” ACS Appl. Mater. Interfaces 6(17), 15078–15085 (2014).
[PubMed]

ACS Appl. Mater. Interfaces (2)

O. Khantamat, C.-H. Li, F. Yu, A. C. Jamison, W.-C. Shih, C. Cai, and T. R. Lee, “Gold nanoshell-decorated silicone surfaces for the Near-Infrared (NIR) photothermal destruction of the pathogenic bacterium e. faecalis,” ACS Appl. Mater. Interfaces 7(7), 3981–3993 (2015).
[Crossref] [PubMed]

Y. Zhu, M. Ramasamy, and D. K. Yi, “Antibacterial activity of ordered gold nanorod arrays,” ACS Appl. Mater. Interfaces 6(17), 15078–15085 (2014).
[PubMed]

Appl. Environ. Microbiol. (1)

T. Miyamoto, S. Okano, and N. Kasai, “Inactivation of Escherichia coli endotoxin by soft hydrothermal processing,” Appl. Environ. Microbiol. 75(15), 5058–5063 (2009).
[Crossref] [PubMed]

Appl. Microbiol. (1)

J. L. Edwards, F. F. Busta, and M. L. Speck, “Thermal inactivation characteristics of bacillus subtilis spores at ultrahigh temperatures,” Appl. Microbiol. 13(6), 851–857 (1965).
[PubMed]

Appl. Phys. Lett. (1)

S. K. Kim, C.-J. Heo, J. Y. Choi, S. Y. Lee, S. G. Jang, J. Won Shim, T. S. Seo, and S.-M. Yang, “Photothermolysis of immobilized bacteria on gold nanograil arrays,” Appl. Phys. Lett. 98(23), 233701 (2011).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[Crossref] [PubMed]

Chem. Commun. (Camb.) (1)

W.-S. Kuo, C.-M. Wu, Z.-S. Yang, S.-Y. Chen, C.-Y. Chen, C.-C. Huang, W.-M. Li, C.-K. Sun, and C.-S. Yeh, “Biocompatible bacteria@Au composites for application in the photothermal destruction of cancer cells,” Chem. Commun. (Camb.) 37, 4430–4432 (2008).
[Crossref] [PubMed]

Chemistry (1)

Z. Fan, D. Senapati, S. A. Khan, A. K. Singh, A. Hamme, B. Yust, D. Sardar, and P. C. Ray, “Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria,” Chemistry 19(8), 2839–2847 (2013).
[Crossref] [PubMed]

Inf. Sci. (1)

W.-C. Shih, C. W. Wong, Y. B. Jeon, S.-G. Kim, and G. Barbastathis, “MEMS tunable gratings with analog actuation,” Inf. Sci. 149(1-3), 31–40 (2003).
[Crossref]

Infect. Control Hosp. Epidemiol. (1)

A. I. Hidron, J. R. Edwards, J. Patel, T. C. Horan, D. M. Sievert, D. A. Pollock, S. K. Fridkin, N. H. S. N. Team, P. N. H. S. N. Facilities, National Healthcare Safety Network TeamParticipating National Healthcare Safety Network Facilities, “NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2006-2007,” Infect. Control Hosp. Epidemiol. 29(11), 996–1011 (2008).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Bacteriol. (1)

T. A. Vishnivetskaya, S. Lucas, A. Copeland, A. Lapidus, T. Glavina del Rio, E. Dalin, H. Tice, D. C. Bruce, L. A. Goodwin, S. Pitluck, E. Saunders, T. Brettin, C. Detter, C. Han, F. Larimer, M. L. Land, L. J. Hauser, N. C. Kyrpides, G. Ovchinnikova, S. Kathariou, R. F. Ramaley, D. F. Rodrigues, C. Hendrix, P. Richardson, and J. M. Tiedje, “Complete genome sequence of the Thermophilic Bacterium Exiguobacterium sp. AT1b,” J. Bacteriol. 193(11), 2880–2881 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

G. M. Santos, F. Zhao, J. Zeng, M. Li, and W. C. Shih, “Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles,” J. Biophotonics 8(10), 855–863 (2015).
[Crossref] [PubMed]

J. Gen. Microbiol. (2)

M. L. Droffner and N. Yamamoto, “Isolation of thermophilic mutants of Bacillus subtilis and Bacillus pumilus and transformation of the thermophilic trait to mesophilic strains,” J. Gen. Microbiol. 131(10), 2789–2794 (1985).
[PubMed]

B. M. Mackey, C. A. Miles, S. E. Parsons, and D. A. Seymour, “Thermal denaturation of whole cells and cell components of Escherichia coli examined by differential scanning calorimetry,” J. Gen. Microbiol. 137(10), 2361–2374 (1991).
[Crossref] [PubMed]

J. Hosp. Infect. (1)

R. T. Mayon-White, G. Ducel, T. Kereselidze, and E. Tikomirov, “An international survey of the prevalence of hospital-acquired infection,” J. Hosp. Infect. 11(A), 43–48 (1988).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Zeng, F. Zhao, M. Li, C.-H. Li, T. R. Lee, and W.-C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(2), 247–252 (2015).
[Crossref]

J. Therm. Biol. (1)

E. G. Velliou, E. Van Derlinden, A. M. Cappuyns, A. H. Geeraerd, F. Devlieghere, and J. F. Van Impe, “Heat inactivation of Escherichia coli K12 MG1655: Effect of microbial metabolites and acids in spent medium,” J. Therm. Biol. 37(1), 72–78 (2012).
[Crossref]

Laser Phys. Lett. (1)

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett. 5(11), 775–792 (2008).
[Crossref]

Macromol. Chem. Phys. (1)

K. D. Pangilinan, C. M. Santos, N. C. Estillore, D. F. Rodrigues, and R. C. Advincula, “Temperature-responsiveness and antimicrobial properties of CNT-PNIPAM hybrid brush films,” Macromol. Chem. Phys. 214(4), 464–469 (2013).
[Crossref]

Nano Lett. (1)

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

W. C. Huang, P. J. Tsai, and Y. C. Chen, “Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria,” Nanomedicine (Lond.) 2(6), 777–787 (2007).
[Crossref] [PubMed]

Nanoscale (6)

Y. Zhao and X. Jiang, “Multiple strategies to activate gold nanoparticles as antibiotics,” Nanoscale 5(18), 8340–8350 (2013).
[Crossref] [PubMed]

G. M. Santos, F. Zhao, J. Zeng, and W.-C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718–5724 (2014).
[Crossref] [PubMed]

J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. C. Wolfe, and W.-C. Shih, “Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates,” Nanoscale 5(10), 4105–4109 (2013).
[Crossref] [PubMed]

I. E. Mejías Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale 4(15), 4746–4756 (2012).
[Crossref] [PubMed]

F. Zhao, J. Zeng, M. M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.-H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Lee, and W.-C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199–8207 (2014).
[Crossref] [PubMed]

M. M. P. Arnob, F. Zhao, J. Zeng, G. M. Santos, M. Li, and W.-C. Shih, “Laser rapid thermal annealing enables tunable plasmonics in nanoporous gold nanoparticles,” Nanoscale 6(21), 12470–12475 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology 23(39), 395101 (2012).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, “Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging,” Photochem. Photobiol. 77(4), 420–430 (2003).
[Crossref] [PubMed]

Quantum Electron. (1)

E. S. Tuchina, P. O. Petrov, K. V. Kozina, F. Ratto, S. Centi, R. Pini, and V. V. Tuchin, “Using gold nanorods labelled with antibodies under the photothermal action of NIR laser radiation on Staphylococcus aureus,” Quantum Electron. 44(7), 683–688 (2014).
[Crossref]

RSC Advances (1)

J. Zeng, F. Zhao, J. Qi, Y. Li, C.-H. Li, Y. Yao, T. R. Lee, and W.-C. Shih, “Internal and external morphology-dependent plasmonic resonance in monolithic nanoporous gold nanoparticles,” RSC Advances 4(69), 36682–36688 (2014).
[Crossref]

Water Res. (1)

F. Ahmed, C. M. Santos, J. Mangadlao, R. Advincula, and D. F. Rodrigues, “Antimicrobial PVK:SWNT nanocomposite coated membrane for water purification: performance and toxicity testing,” Water Res. 47(12), 3966–3975 (2013).
[Crossref] [PubMed]

Other (4)

W.-C. Shih, K. Bechtel, and M. S. Feld, “Noninvasive glucose sensing with Raman spectroscopy,” in Analytical Chemistry of In Vivo Glucose Measurements (John Wiley & Sons, 2009), pp. 391–419.

R. K. Root, Clinical Infectious Diseases: A Practical Approach (Oxford University Press, 1999).

S. S. Block, Disinfection, Sterilization, and Preservation (Lippincott Williams & Wilkins, 2001).

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10, 051504 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scanning electron microscopy (SEM) images of nanoporous gold disks (NPGDs) arrays on glass at different magnifications: (a,c) 200,000x (scale bar ~200 nm) and (b,d) 100,000x (scale bar ~500 nm) at top and oblique (90°) views, respectively. (e) Normalized extinction spectra of NPGDs (disk diameter: 400 nm).

Fig. 2
Fig. 2

Schematic diagram of the thermal run and control experiments. Control 1: A non-irradiated glass substrate was used to test the life expectancy of the bacterial strains inside the covered glass slides. Control 2: A non-irradiated NPGD substrate was tested for its toxicity to the bacterial samples. Control 3: One coverslip without NPGD was irradiated to test the effect of irradiation on cell viability.

Fig. 3
Fig. 3

Thermal imaging measurements of the NPGD substrate. (a) Temporal temperature profile of the irradiated portion of the NPGD substrate with (b) zoomed-in portion (dotted rectangular area) for the temperature rise portion demonstrating thermal transfer rate from NPGD to the water/glass interface. Thermographic image of the temperature distribution of (c) bare NPGD substrate (black curve) and (d) the NPGD substrate with PBS buffer solution sandwiched with another blank glass coverslip at 30 s of irradiation exposure. Using the same irradiation conditions, these samples were exposed without the bacteria present on the NPGD surface. The dotted circle represents the irradiated spot (diameter: 3 mm) on the sample while dotted square represents the area on the glass containing the NPGD array. (e) Temporal temperature profile within the irradiated spot and (f) thermal image of the glass surface on top of the NPGD substrate with E. coli bacteria deposited on the surface after 20 s of irradiation exposure. Dotted circle represents the irradiated portion of the NPGD substrate. Scale bar is 3 mm.

Fig. 4
Fig. 4

Percentage of dead cells of E. coli MG 1655, B. subtilis 102 and Exiguobacterium sp. AT1b on NPGD substrate when exposed to laser (785 nm, 0.085 W/mm2) for 0 to 30 s.

Fig. 5
Fig. 5

Cell death counts (at time: 25 s) for the bacterial strains: E. coli MG 1655, B. subtilis 102 and Exiguobacterium sp. AT1b. Three separate control experiments were performed for each bacterial strain. *Statistical significant difference between the thermal run and the controls was tested by one-way ANOVA and Tukey test (p<0.001). Refer to Fig. 2 for specific experimental configurations.

Fig. 6
Fig. 6

Total (green) and dead (red) cell count images of (a) E. coli K-12 and (b) B. subtilis cells on the surfaces of NPGDs showing viability dependence on NIR irradiation. Thermal run: bacteria cells on NPGD exposed to NIR for 25 s; Control 2: bacteria cells on NPGD without NIR exposure. The field-of-view of the image covers an area of 800 µm2 (100 µm x 80 µm) of the sample.

Fig. 7
Fig. 7

SEM images of E. coli (a, b and c), B. subtilis (d, e and f) and Exiguobacterium sp. AT1b (g, h and i) cells deposited on the NPGD substrate. The bacteria in the images A, D and G were not exposed to the NIR source. Cells captured in the images b, c, e, f, h and i were exposed to the NIR source on the NPGD substrate for 25 s.

Fig. 8
Fig. 8

Total (green) and dead (red) cell count images of Exiguobacterium AT1b cells attached NPGDs after exposure to NIR light.; Thermal Run:  cells on NPGD exposed to NIR for 25 s; Control 1: control cells on glass without NIR exposure; Control 2: control cells on NPGD without NIR exposure; Control 3: control cells on glass exposed to NIR for 25 s. The field-of-view of the image covers an area of 800 µm2 (100 µm x 80 µm) of the sample.

Metrics