Abstract

A series of Ce3+ or Tb3+ doped and Ce3+, Tb3+, and Na+ co-doped SrB2O4 phosphors were synthesized by solid-state reaction method. Luminescence intensity was increased as M+ (M+ = Li+, Na+, K+) ions were used to compensate the valance in SrB2O4:Ce3+, in which the charge compensation by Na+ ion in SrB2O4:Ce3+ showed the strongest luminescence intensity. When the content of Ce3+ was fixed at 2 mol. % by tuning the contents of Tb3+ ions from 1 mol. % to 10 mol. %, SrB2O4:0.02Ce3+, yTb3+, zNa+ showed both an emission (360 nm) from Ce3+ and a yellowish-green emission (541 nm) from Tb3+, which disclose that an effective energy transfer from Ce3+ to Tb3+ exists in the phosphor. The energy transfer efficiency reaches as high as 80.2% for a Tb3+ concentration of 10 mol. %. The QE of SrB2O4:0.02Ce3+,0.03Tb3+, SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+ phosphors are 41.3% and 54.7% excited at 319 nm. The energy transfer mechanism was proved to be dipole–dipole interaction. The CIE chromaticity coordinates of the optimized SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+ phosphor, which were thermal stable revealed by temperature-dependent PL results, were calculated to be (0.3035, 0.4812).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Luminescence and energy transfer properties of color-tunable Sr4La(PO4)3O: Ce3+, Tb3+, Mn2+ phosphors for WLEDs

Ju Cheng, Jia Zhang, Jian Lu, Hongchao Zhang, Sardar Maryam, Zhonghua Shen, Xiaowu Ni, Xintian Bian, Pengcheng Ma, and Jin Shi
Opt. Mater. Express 8(7) 1850-1862 (2018)

Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+,Tb3+ phosphors excited by ultraviolet light

Hai Guo, Hao Zhang, JingJing Li, and Fang Li
Opt. Express 18(26) 27257-27262 (2010)

White light obtainment via tricolor luminescent centers and energy transfer in Ca3ZrSi2O9:Eu3+,Bi3+,Tb3+ phosphors

Zhenzhen Zhou, Guanghui Liu, Jia Ni, Wanlu Liu, and Qian Liu
Opt. Mater. Express 8(11) 3526-3542 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
    [Crossref]
  2. T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
    [Crossref]
  3. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [Crossref] [PubMed]
  4. T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
    [Crossref] [PubMed]
  5. L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
    [Crossref]
  6. J. Zhou and Z. G. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
    [Crossref]
  7. Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
    [Crossref]
  8. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
    [Crossref]
  9. R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
    [Crossref] [PubMed]
  10. C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
    [Crossref]
  11. Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification,” Opt. Lett. 33(16), 1816–1818 (2008).
    [Crossref] [PubMed]
  12. Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
    [Crossref]
  13. B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
    [Crossref]
  14. J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
    [Crossref]
  15. C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
    [Crossref] [PubMed]
  16. J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
    [Crossref] [PubMed]
  17. X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
    [Crossref]
  18. Z. G. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
    [Crossref]
  19. W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
    [Crossref]
  20. J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
    [Crossref]
  21. Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
    [Crossref]
  22. J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
    [Crossref] [PubMed]
  23. R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
    [Crossref]
  24. Z. Tao, Y. Huang, and H. J. Seo, “Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4),” Dalton Trans. 42(6), 2121–2129 (2013).
    [Crossref] [PubMed]
  25. Z. Xia and W. Wu, “Preparation and luminescence properties of Ce3+ and Ce3+/Tb3+-activated Y4Si2O7N2 phosphors,” Dalton Trans. 42(36), 12989–12997 (2013).
    [Crossref] [PubMed]
  26. X. Zhang and M. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans. 43(6), 2465–2472 (2014).
    [Crossref] [PubMed]
  27. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24(2), 131–144 (1969).
  28. G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
    [Crossref]
  29. S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
    [Crossref] [PubMed]
  30. G. Blasse and B. Grabmarier, Luminescent Materials (Springer-Verlag, 1994).
  31. D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
    [Crossref]
  32. H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
    [Crossref]
  33. R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

2015 (2)

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
[Crossref]

2014 (7)

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

X. Zhang and M. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans. 43(6), 2465–2472 (2014).
[Crossref] [PubMed]

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
[Crossref]

J. Zhou and Z. G. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

2013 (4)

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Z. Tao, Y. Huang, and H. J. Seo, “Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4),” Dalton Trans. 42(6), 2121–2129 (2013).
[Crossref] [PubMed]

Z. Xia and W. Wu, “Preparation and luminescence properties of Ce3+ and Ce3+/Tb3+-activated Y4Si2O7N2 phosphors,” Dalton Trans. 42(36), 12989–12997 (2013).
[Crossref] [PubMed]

2012 (6)

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Z. G. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

2010 (1)

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

2008 (2)

Y. X. Pan and G. K. Liu, “Enhancement of phosphor efficiency via composition modification,” Opt. Lett. 33(16), 1816–1818 (2008).
[Crossref] [PubMed]

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

2007 (2)

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
[Crossref] [PubMed]

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

2003 (1)

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[Crossref]

1997 (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

1996 (1)

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

1994 (1)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

1986 (1)

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
[Crossref]

1976 (1)

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[Crossref]

1969 (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24(2), 131–144 (1969).

Agathopoulos, S.

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

Ban, T.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[Crossref]

Blasse, G.

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
[Crossref]

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24(2), 131–144 (1969).

Chen, L.

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
[Crossref]

Coutino-Gonzalez, E.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Deconinck, G.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Du, G. P.

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Durinck, G.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Enrichi, F.

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

Fang, Z.

Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
[Crossref]

Gong, M.

X. Zhang and M. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans. 43(6), 2465–2472 (2014).
[Crossref] [PubMed]

Gong, M. L.

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Gui, M. Y.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Guo, C.

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Hanselaer, P.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Hao, L. Y.

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

Hashimoto, T.

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
[Crossref] [PubMed]

He, P.

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Hirosaki, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

Hofkens, J.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Hu, Q.

Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
[Crossref]

Hu, W. W.

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

Hu, Y. H.

Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Huang, Y.

Z. Tao, Y. Huang, and H. J. Seo, “Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4),” Dalton Trans. 42(6), 2121–2129 (2013).
[Crossref] [PubMed]

Huang, Z.

Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
[Crossref]

Ivanovskikh, K. V.

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

Jang, K.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Jayasimhadri, M.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Jeong, J. H.

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Jin, Y. H.

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Jing, H.

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Joos, J. J.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Ju, G. F.

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Jüstel, T.

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

Kim, J. B.

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Kim, S. S.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Kimura, N.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

Kobayashi, N.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[Crossref]

Kong, Y. F.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Kuang, X.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

Kumar, G. B.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Lee, J. H.

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Lee, K. S.

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Lee, Y. I.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Leyre, S.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Li, C.

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

Liang, H.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

Lim, J. M.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Lin, J.

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

Liu, C.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

Liu, G. K.

Liu, R. S.

Z. G. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

Liu, X. F.

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

Lu, P. Z.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Luo, A.

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Marin, R.

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

Meijerink, A.

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

Meuret, Y.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Mitomo, M.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

Mu, Z. F.

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Mukai, T.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Nakamura, S.

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
[Crossref] [PubMed]

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Nishida, T.

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[Crossref]

Ogieglo, J. M.

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

Pan, Y. X.

Pang, Q.

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Pank, J. R.

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Poelman, D.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Qin, X. M.

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Qin, X. Z.

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Qiu, J. R.

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

Ratman, B. V.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Riello, P.

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

Ronda, C. R.

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

Ryckaert, J.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Sakuma, K.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

Schlotter, P.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schmidt, R.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schneider, J.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Senoh, M.

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

Seo, H. J.

Z. Tao, Y. Huang, and H. J. Seo, “Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4),” Dalton Trans. 42(6), 2121–2129 (2013).
[Crossref] [PubMed]

Shannon, R.

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Shi, J.

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Shi, W. Z.

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Shin, D. S.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Shin, Y. H.

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Smet, P. F.

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Song, T. K.

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

Speck, J. S.

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
[Crossref] [PubMed]

Sponchia, G.

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

Su, Q.

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Su, X.

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Suh, I. H.

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Sulcis, R.

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

Sun, S.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

Tao, Y.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

Tao, Z.

Z. Tao, Y. Huang, and H. J. Seo, “Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4),” Dalton Trans. 42(6), 2121–2129 (2013).
[Crossref] [PubMed]

Teng, Y.

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

Tian, S.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Wang, L.

Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
[Crossref]

Wang, X. J.

Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
[Crossref]

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Wen, D.

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Wu, C. L.

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Wu, F.

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
[Crossref] [PubMed]

Wu, L.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Wu, M.

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Wu, W.

Z. Xia and W. Wu, “Preparation and luminescence properties of Ce3+ and Ce3+/Tb3+-activated Y4Si2O7N2 phosphors,” Dalton Trans. 42(36), 12989–12997 (2013).
[Crossref] [PubMed]

Xia, Z.

Z. Xia and W. Wu, “Preparation and luminescence properties of Ce3+ and Ce3+/Tb3+-activated Y4Si2O7N2 phosphors,” Dalton Trans. 42(36), 12989–12997 (2013).
[Crossref] [PubMed]

Xia, Z. G.

J. Zhou and Z. G. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

Z. G. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

Xie, R. J.

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

Xu, J. J.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Xu, X.

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

Yang, G.

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Yang, H.

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

Yang, J.

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

Yang, Z.

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Yang, Z. F.

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
[Crossref]

Ye, S.

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

Yu, Y.

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

Zhang, C.

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

Zhang, G.

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

Zhang, X.

X. Zhang and M. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans. 43(6), 2465–2472 (2014).
[Crossref] [PubMed]

Zhang, X. G.

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Zhang, Y.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Zhao, L. X.

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

Zhong, J.

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

Zhou, J.

J. Zhou and Z. G. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

Zhou, J. J.

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

Zhou, L. Y.

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Zhu, Q. Q.

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

Zych, A.

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

Acta Crystallogr. (1)

R. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. 32(5), 751–767 (1976).
[Crossref]

Acta Crystallogr. C (1)

J. B. Kim, K. S. Lee, I. H. Suh, J. H. Lee, J. R. Pank, and Y. H. Shin, “Strontium Metaborate, SrB2O4,” Acta Crystallogr. C 52(3), 498–500 (1996).
[Crossref]

Appl. Phys. Lett. (2)

S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64(13), 1687–1689 (1994).
[Crossref]

T. Nishida, T. Ban, and N. Kobayashi, “High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors,” Appl. Phys. Lett. 82(22), 3817–3819 (2003).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys., A Mater. Sci. Process. 64(4), 417–418 (1997).
[Crossref]

Ceram. Int. (2)

Q. Hu, L. Wang, Z. Huang, and Z. Fang, “Tunable single-phase white-light-emitting Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor based on energy transfer,” Ceram. Int. 41(7), 8988–8995 (2015).
[Crossref]

X. Z. Qin, X. G. Zhang, P. He, Q. Pang, L. Y. Zhou, and M. L. Gong, “Enhanced luminescence properties and energy transfer in Ce3+ and Tb3+ co-doped NaCaBO3 phosphor,” Ceram. Int. 41(4), 5554–5560 (2015).
[Crossref]

Dalton Trans. (3)

Z. Tao, Y. Huang, and H. J. Seo, “Blue luminescence and structural properties of Ce3+-activated phosphosilicate apatite Sr5(PO4)2(SiO4),” Dalton Trans. 42(6), 2121–2129 (2013).
[Crossref] [PubMed]

Z. Xia and W. Wu, “Preparation and luminescence properties of Ce3+ and Ce3+/Tb3+-activated Y4Si2O7N2 phosphors,” Dalton Trans. 42(36), 12989–12997 (2013).
[Crossref] [PubMed]

X. Zhang and M. Gong, “Single-phased white-light-emitting NaCaBO3:Ce3+,Tb3+,Mn2+ phosphors for LED applications,” Dalton Trans. 43(6), 2465–2472 (2014).
[Crossref] [PubMed]

Inorg. Chem. (2)

J. Yang, C. Zhang, C. Li, Y. Yu, and J. Lin, “Energy transfer and tunable luminescence properties of Eu3+ in TbBO3 microspheres via a facile hydrothermal process,” Inorg. Chem. 47(16), 7262–7270 (2008).
[Crossref] [PubMed]

C. Liu, H. Liang, X. Kuang, J. Zhong, S. Sun, and Y. Tao, “Structure refinement and two-center luminescence of Ca3La3(BO3)5:Ce3+ under VUV-UV excitation,” Inorg. Chem. 51(16), 8802–8809 (2012).
[Crossref] [PubMed]

J. Alloys Compd. (1)

B. V. Ratman, M. Jayasimhadri, G. B. Kumar, K. Jang, S. S. Kim, Y. I. Lee, J. M. Lim, D. S. Shin, and T. K. Song, “Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs,” J. Alloys Compd. 564, 100–104 (2013).
[Crossref]

J. Lumin. (1)

Z. F. Yang, Y. H. Hu, L. Chen, and X. J. Wang, “Color tuning of Ba2ZnSi2O7:Ce3+, Tb3+ phosphor via energy transfer,” J. Lumin. 153, 412–416 (2014).
[Crossref]

J. Mater. Chem. (3)

H. Jing, C. Guo, G. Zhang, X. Su, Z. Yang, and J. H. Jeong, “Photoluminescent properties of Ce3+ in compounds Ba2Ln(BO3)2Cl (Ln= Gd and Y),” J. Mater. Chem. 22(27), 13612–13618 (2012).
[Crossref]

R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” J. Mater. Chem. 90(19), 1101 (2007).

L. Wu, Y. Zhang, M. Y. Gui, P. Z. Lu, L. X. Zhao, S. Tian, Y. F. Kong, and J. J. Xu, “Luminescence and energy transfer of a color tunable phosphor:Dy 3+, Tm 3+, and Eu 3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22(13), 6463–6470 (2012).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. Zhou and Z. G. Xia, “Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+, Eu3+ phosphors,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2(34), 6978–6984 (2014).
[Crossref]

J. Nanopart. Res. (1)

R. Marin, G. Sponchia, P. Riello, R. Sulcis, and F. Enrichi, “Photoluminescence properties of YAG:Ce3+, Pr3+ phosphors synthesized via the Pechini method for white LEDs,” J. Nanopart. Res. 14(6), 1–13 (2012).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+.,” J. Phys. Chem. A 116(33), 8464–8474 (2012).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

Z. G. Xia and R. S. Liu, “Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs,” J. Phys. Chem. C 116(29), 15604–15609 (2012).
[Crossref]

J. Solid State Chem. (2)

D. Wen, H. Yang, G. Yang, J. Shi, M. Wu, and Q. Su, “Structure and photoluminescence properties of Na2Y2B2 O7: Ce3+, Tb3+ phosphors for solid-state lighting application,” J. Solid State Chem. 213, 65–71 (2014).
[Crossref]

G. Blasse, “Energy transfer between inequivalent Eu2+ ions,” J. Solid State Chem. 62(2), 207–211 (1986).
[Crossref]

Mater. Res. Bull. (1)

W. W. Hu, Q. Q. Zhu, L. Y. Hao, X. Xu, and S. Agathopoulos, “Luminescence properties and energy transfer in AlN:Ce3+, Tb3+ phosphors,” Mater. Res. Bull. 51, 224–227 (2014).
[Crossref]

Mater. Sci. Semicond. Process. (1)

C. L. Wu, A. Luo, G. P. Du, X. M. Qin, and W. Z. Shi, “Synthesis and luminescent properties of nonaggregated YAG:Ce3+ phosphors via the molten salt synthesis method,” Mater. Sci. Semicond. Process. 16(3), 679–685 (2013).
[Crossref]

Nat. Mater. (1)

T. Hashimoto, F. Wu, J. S. Speck, and S. Nakamura, “A GaN bulk crystal with improved structural quality grown by the ammonothermal method,” Nat. Mater. 6(8), 568–571 (2007).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. (1)

J. J. Zhou, Y. Teng, S. Ye, X. F. Liu, and J. R. Qiu, “Broadband down-conversion spectral modification based on energy transfer,” Opt. Mater. 33(2), 153–158 (2010).
[Crossref]

Philips Res. Rep. (1)

G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24(2), 131–144 (1969).

Physica B (1)

Y. H. Jin, Y. H. Hu, L. Chen, X. J. Wang, Z. F. Mu, G. F. Ju, and Z. F. Yang, “A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+ based on energy transfer,” Physica B 436, 105–110 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

S. Leyre, E. Coutino-Gonzalez, J. J. Joos, J. Ryckaert, Y. Meuret, D. Poelman, P. F. Smet, G. Durinck, J. Hofkens, G. Deconinck, and P. Hanselaer, “Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup,” Rev. Sci. Instrum. 85(12), 123115 (2014).
[Crossref] [PubMed]

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[Crossref] [PubMed]

Other (1)

G. Blasse and B. Grabmarier, Luminescent Materials (Springer-Verlag, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) XRD patterns of samples SrB2O4:xCe3+, yTb3+, zNa+. (b) Crystal structure of SrB2O4 (along Z axis) and the coordination environment of Sr with O atoms (M+ = Li+, Na+, K+).
Fig. 2
Fig. 2 Diffuse reflection spectra of sample SrB2O4:xCe3+, yTb3+, zNa+.
Fig. 3
Fig. 3 The PLE and PL spectra of phosphor SrB2O4:0.02Ce3+. The dotted lines A and B are double-peak fitting of Ce3+ by Gauss fitting. The inset is photoluminescence intensities of SrB2O4:xCe3+ as a function of Ce3+ contents.
Fig. 4
Fig. 4 (a) The normalized emission bands of the SrB2O4:xCe3+ phosphors (λex = 319 nm). The inset is the maximum wavelength for each of the SrB2O4:xCe3+ phosphors (λex = 319 nm). (b) The emission bands of the SrB2O4:0.02Ce3+, 0.02M+ (M+ = Li+, Na+, K+) (λex = 319 nm).
Fig. 5
Fig. 5 The excitation and emission spectra of SrB2O4:0.02Ce3+ (a) and SrB2O4:0.03Tb3+ (b).
Fig. 6
Fig. 6 The PLE and PL spectra of SrB2O4:0.02Ce3+, 0.03Tb3+ (a) and the PLE spectrum of SrB2O4:0.03Tb3+ (b) (for comparison, the red dotted line is timed by 30).
Fig. 7
Fig. 7 The PL spectra of SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+ and SrB2O4:0.02Ce3+, 0.03Tb3+ phosphors (λex = 319 nm). The inset is the double-peak fitting of SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+ (2.8-3.5 eV) by Gauss fitting.
Fig. 8
Fig. 8 (a) The emission spectra of SrB2O4:0.02Ce3+, yTb3+, zNa+ phosphors (λex = 319 nm). (b) The normalized emission intensity of Ce3+ (5d-4f) and Tb3+ (5D47FJ) as a function of Tb3+ contents and the intensities of ηET as a function of Tb3+ contents.
Fig. 9
Fig. 9 Dependence of Iso /Is of Cn/3 on the exponent (a) n = 6, (b) n = 8 and (c) n = 10.
Fig. 10
Fig. 10 Photoluminescence decay curves of SrB2O4:0.02Ce3+, yTb3+, zNa+ phosphors.
Fig. 11
Fig. 11 CIE chromaticity coordinates of SrB2O4:0.02Ce3+, 0.02Na+ (A), SrB2O4:0.02Ce3+, 0.03Tb3+ (C), SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+ (D) (λex = 319 nm) and the CIE chromaticity coordinates of SrB2O4:0.03Tb3+ (B) under (λex = 258 nm).
Fig. 12
Fig. 12 (a) The temperature-dependent PL spectra of SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+ex = 319 nm). (b) The normalized emission bands of Ce3+ (5d-4f) as a function of temperature contents. (c) The intensity of the emission of Ce3+ and Tb3+ ion as a function of temperature contents. (d) The ln(I0/IT −1) vs. 1/kT activation energy graph for thermal quenching of SrB2O4:0.02Ce3+, 0.03Tb3+, 0.05Na+.

Tables (1)

Tables Icon

Table 1 The CIE Chromaticity Coordinates of SrB2O4:xCe3+, yTb3+, zNa+ under the excitation of 319 nm UV and SrB2O4:0.03Tb3+ excited at 258 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η T = 1 I s / I s o
R C e T b 2 [ 3 V 4 π x c Z ] 1 3
I s o I s C n / 3
Q E = P c ( 1 A d i r ) P b L a A d i r
A d i r = 1 L c L b
I = I 0 exp ( t τ )
I T = I 0 / [ 1 + exp ( E a / k T ) ]

Metrics