Abstract

UCNP-based drug delivery systems commonly rely on stimuli-sensitive auxiliaries, lacking a straightforward manipulation strategy. Here we designed Yb3+-enhanced upconversion/mesoporous silica nanocomposites (UCNP@SiO2) for consecutive cell imaging, photothermal drug delivery and cancer therapy. Core UCNPs (NaYbF4: 2% Er3+) were synthesized and coated with mesoporous silica, whose high-efficiency photothermal properties were verified in vitro. Then doxorubicin hydrochloride (DOX) was loaded on the UCNP@SiO2 and successfully triggered to release by a 975 nm laser of 150 mW or 300 mW. Before the therapy, we used a much lower laser power of 15 mW (which would cause little DOX release) for UCNP-probed fluorescence imaging of Hela cells and affirmed a favorable cell uptake of nanocomposites. Subsequently, cell viability assay and PI stain have demonstrated that the 300 mW laser could manipulate drug delivery of UCNP@SiO2-DOX and cause a severe loss of cell viability. The Yb3+-enhanced UCNP@SiO2 shows a great potential in simultaneous biomedical imaging and photothermal-triggered on-site drug delivery for chemotherapy of cancer.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Doxorubicin loaded nanodiamond-silk spheres for fluorescence tracking and controlled drug release

Asma Khalid, Alexander N. Mitropoulos, Benedetto Marelli, Snjezana Tomljenovic-Hanic, and Fiorenzo G. Omenetto
Biomed. Opt. Express 7(1) 132-147 (2016)

Biodegradable polymeric nanoparticles containing gold nanoparticles and Paclitaxel for cancer imaging and drug delivery using photoacoustic methods

Yanjie Wang, Eric M. Strohm, Yang Sun, Zhaoxia Wang, Yuanyi Zheng, Zhigang Wang, and Michael C. Kolios
Biomed. Opt. Express 7(10) 4125-4138 (2016)

Methylene blue-loaded gold nanobipyramids @SiO2 enhanced singlet oxygen generation for phototherapy of cancer cells

Junliang Lv, Gongqing Wu, Yang He, Lijuan Zhang, and Yunhong Yi
Opt. Mater. Express 7(2) 409-414 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. J. Stark, “Nanoparticles in biological systems,” Angew. Chem. Int. Ed. Engl. 50(6), 1242–1258 (2011).
    [Crossref] [PubMed]
  2. B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
    [Crossref] [PubMed]
  3. X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
    [Crossref] [PubMed]
  4. Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
    [Crossref] [PubMed]
  5. T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
    [Crossref] [PubMed]
  6. T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
    [Crossref] [PubMed]
  7. Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
    [Crossref] [PubMed]
  8. A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
    [Crossref] [PubMed]
  9. Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
    [Crossref] [PubMed]
  10. D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
    [Crossref] [PubMed]
  11. N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
    [Crossref] [PubMed]
  12. L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
    [Crossref] [PubMed]
  13. Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
    [Crossref] [PubMed]
  14. C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
    [Crossref] [PubMed]
  15. Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
    [Crossref] [PubMed]
  16. C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
    [Crossref]
  17. Q. Zhan, J. Liu, Y. Zhao, and X. Zhang, “Research Progress in Nonlinear Upconversion Luminescence of Rare-earth Nanoparticals in Biomedical Optics,” Acta Laser Biology Sinica 1, 004 (2013).
  18. G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
    [Crossref] [PubMed]
  19. C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
    [Crossref]
  20. C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
    [Crossref] [PubMed]
  21. J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
    [Crossref] [PubMed]
  22. L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
    [Crossref]
  23. N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
    [Crossref] [PubMed]
  24. J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
    [Crossref] [PubMed]
  25. I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
    [Crossref] [PubMed]
  26. Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
    [Crossref] [PubMed]
  27. N. Ž. Knežević, B. G. Trewyn, and V. S. Y. Lin, “Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier,” Chemistry 17(12), 3338–3342 (2011).
    [Crossref] [PubMed]
  28. A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
    [Crossref]
  29. C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
    [Crossref] [PubMed]
  30. J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
    [Crossref] [PubMed]
  31. G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
    [Crossref] [PubMed]

2015 (1)

2014 (4)

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

2013 (4)

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
[Crossref] [PubMed]

2012 (7)

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

2011 (5)

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

W. J. Stark, “Nanoparticles in biological systems,” Angew. Chem. Int. Ed. Engl. 50(6), 1242–1258 (2011).
[Crossref] [PubMed]

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

N. Ž. Knežević, B. G. Trewyn, and V. S. Y. Lin, “Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier,” Chemistry 17(12), 3338–3342 (2011).
[Crossref] [PubMed]

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

2010 (2)

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

2009 (2)

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

2008 (2)

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
[Crossref] [PubMed]

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

2005 (1)

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Andersson-Engels, S.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Bednarkiewicz, A.

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Bhatia, S. N.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Bhirde, A. A.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Boyer, J.-C.

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Bu, W.

J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
[Crossref] [PubMed]

Cao, J.

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

Chen, C.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Chen, C. S.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Chen, G.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Chen, M.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Chen, T.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Chen, X.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Chen, Y.

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Cheng, L.

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Cheng, Z.

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Dai, H.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
[Crossref] [PubMed]

Dai, Y.

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

De Geest, B. G.

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

De Smedt, S. C.

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

Demeester, J.

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

Fan, A. C.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Felsher, D. W.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Flask, C. A.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

Gai, S.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Gavard, J.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Goodwin, A.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Gorelikov, I.

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Gu, L.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Gutkind, J. S.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

He, D.

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

He, F.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

He, S.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

He, X.

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

Hou, Z.

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Hu, Z.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Huang, Q.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Jain, T. K.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Ji, Y.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Jiang, X.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Kang, X.

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Karambelkar, A.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Kneževic, N. Ž.

N. Ž. Knežević, B. G. Trewyn, and V. S. Y. Lin, “Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier,” Chemistry 17(12), 3338–3342 (2011).
[Crossref] [PubMed]

Kumar, R.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Labhasetwar, V.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Leapman, R. D.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Leslie-Pelecky, D. L.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Li, C.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Li, F.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Li, N.

Li, X.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Li, Z.

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Lin, J.

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Lin, K.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Lin, Q.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Lin, V. S. Y.

N. Ž. Knežević, B. G. Trewyn, and V. S. Y. Lin, “Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier,” Chemistry 17(12), 3338–3342 (2011).
[Crossref] [PubMed]

Liu, H.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Liu, J.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
[Crossref] [PubMed]

Liu, X.

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Liu, Z.

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
[Crossref] [PubMed]

Lu, D.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Ma, P.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Masedunskas, A.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Matsuura, N.

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Messing, M. E.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Miller, J. S.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Morales, M. A.

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Nakayama-Ratchford, N.

Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
[Crossref] [PubMed]

Niu, N.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Nyk, M.

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Pan, L.

J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
[Crossref] [PubMed]

Patel, V.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Peng, J.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Prasad, P. N.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Pu, F.

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Qian, J.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Qiu, H.

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Qu, F.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Qu, X.

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Rakhra, K.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Ren, J.

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Richey, J.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

Rusling, J. F.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Sahoo, S. K.

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Sailor, M. J.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Sanders, N. N.

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

Sherlock, S.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Shi, J.

J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
[Crossref] [PubMed]

Singh, N.

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Somesfalean, G.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Sousa, A. A.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Stark, W. J.

W. J. Stark, “Nanoparticles in biological systems,” Angew. Chem. Int. Ed. Engl. 50(6), 1242–1258 (2011).
[Crossref] [PubMed]

Strand, M.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

Strek, W.

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Sui, C.

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Sukhorukov, G. B.

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

Sun, X.

Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
[Crossref] [PubMed]

Sun, Y.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Svenmarker, P.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Tan, W.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Trewyn, B. G.

N. Ž. Knežević, B. G. Trewyn, and V. S. Y. Lin, “Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier,” Chemistry 17(12), 3338–3342 (2011).
[Crossref] [PubMed]

van Veggel, F. C.

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

Wallenberg, L. R.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Wang, C.

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

Wang, J.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Wang, K.

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

Wang, L.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Wang, Y.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Wawrzynczyk, D.

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Weigert, R.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Wu, R.

Wu, X.

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Wu, Y.

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Xu, C. T.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

Xu, J.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Yan, C.-H.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Yang, D.

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Yang, G.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Yang, P.

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

Yang, Q.

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Yang, X.

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Yin, M.

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

Yuan, Q.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Zhai, X.

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Zhan, Q.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Zhang, G.

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Zhang, X.

J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
[Crossref] [PubMed]

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Zhang, Y.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Zhao, J.

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Zhao, L.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Zhao, Y.

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

Zhao, Z.

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

Zhu, L.

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

ACS Appl. Mater. Interfaces (1)

N. Niu, F. He, P. Ma, S. Gai, G. Yang, F. Qu, Y. Wang, J. Xu, and P. Yang, “Up-conversion nanoparticle assembled mesoporous silica composites: synthesis, plasmon-enhanced luminescence, and near-infrared light triggered drug release,” ACS Appl. Mater. Interfaces 6(5), 3250–3262 (2014).
[Crossref] [PubMed]

ACS Nano (6)

C. T. Xu, P. Svenmarker, H. Liu, X. Wu, M. E. Messing, L. R. Wallenberg, and S. Andersson-Engels, “High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles,” ACS Nano 6(6), 4788–4795 (2012).
[Crossref] [PubMed]

G. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Ågren, and P. N. Prasad, “Ultrasmall monodisperse NaYF4):Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence,” ACS Nano 4(6), 3163–3168 (2010).
[Crossref] [PubMed]

Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano 1(1), 50–56 (2007).
[Crossref] [PubMed]

A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, and J. F. Rusling, “Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery,” ACS Nano 3(2), 307–316 (2009).
[Crossref] [PubMed]

Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, and W. Tan, “Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid,” ACS Nano 6(7), 6337–6344 (2012).
[Crossref] [PubMed]

Y. Dai, P. Ma, Z. Cheng, X. Kang, X. Zhang, Z. Hou, C. Li, D. Yang, X. Zhai, and J. Lin, “Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres,” ACS Nano 6(4), 3327–3338 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. Zhao, J. Peng, Q. Huang, C. Li, M. Chen, Y. Sun, Q. Lin, L. Zhu, and F. Li, “Near‐Infrared Photoregulated Drug Release in Living Tumor Tissue via Yolk‐Shell Upconversion Nanocages,” Adv. Funct. Mater. 24(3), 363–371 (2014).
[Crossref]

Adv. Mater. (2)

X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, and X. Qu, “Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles,” Adv. Mater. 24(21), 2890–2895 (2012).
[Crossref] [PubMed]

Z. Zhang, L. Wang, J. Wang, X. Jiang, X. Li, Z. Hu, Y. Ji, X. Wu, and C. Chen, “Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment,” Adv. Mater. 24(11), 1418–1423 (2012).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (3)

W. J. Stark, “Nanoparticles in biological systems,” Angew. Chem. Int. Ed. Engl. 50(6), 1242–1258 (2011).
[Crossref] [PubMed]

J. Liu, W. Bu, L. Pan, and J. Shi, “NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica,” Angew. Chem. Int. Ed. Engl. 52(16), 4375–4379 (2013).
[Crossref] [PubMed]

Z. Liu, A. C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. W. Felsher, and H. Dai, “Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy,” Angew. Chem. Int. Ed. Engl. 48(41), 7668–7672 (2009).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and W. Strek, “Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors,” Appl. Phys. B 103(4), 847–852 (2011).
[Crossref]

Biomater. Sci. (1)

C. Li, Z. Hou, Y. Dai, D. Yang, Z. Cheng, and J. Lin, “A facile fabrication of upconversion luminescent and mesoporous core–shell structured β-NaYF4: Yb3+, Er3+@mSiO2 nanocomposite spheres for anti-cancer drug delivery and cell imaging,” Biomater. Sci. 1(2), 213–223 (2013).
[Crossref]

Biomaterials (3)

C. Wang, L. Cheng, and Z. Liu, “Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy,” Biomaterials 32(4), 1110–1120 (2011).
[Crossref] [PubMed]

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-Pelecky, C. A. Flask, and V. Labhasetwar, “Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging,” Biomaterials 29(29), 4012–4021 (2008).
[Crossref] [PubMed]

Y. Dai, D. Yang, P. Ma, X. Kang, X. Zhang, C. Li, Z. Hou, Z. Cheng, and J. Lin, “Doxorubicin conjugated NaYF4:Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer,” Biomaterials 33(33), 8704–8713 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Chem. Rev. (1)

G. Chen, H. Qiu, P. N. Prasad, and X. Chen, “Upconversion nanoparticles: design, nanochemistry, and applications in theranostics,” Chem. Rev. 114(10), 5161–5214 (2014).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, “Release mechanisms for polyelectrolyte capsules,” Chem. Soc. Rev. 36(4), 636–649 (2007).
[Crossref] [PubMed]

Chemistry (1)

N. Ž. Knežević, B. G. Trewyn, and V. S. Y. Lin, “Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier,” Chemistry 17(12), 3338–3342 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

N. Singh, A. Karambelkar, L. Gu, K. Lin, J. S. Miller, C. S. Chen, M. J. Sailor, and S. N. Bhatia, “Bioresponsive mesoporous silica nanoparticles for triggered drug release,” J. Am. Chem. Soc. 133(49), 19582–19585 (2011).
[Crossref] [PubMed]

Langmuir (1)

D. He, X. He, K. Wang, J. Cao, and Y. Zhao, “A light-responsive reversible molecule-gated system using thymine-modified mesoporous silica nanoparticles,” Langmuir 28(8), 4003–4008 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Mol. Pharm. (1)

T. K. Jain, M. A. Morales, S. K. Sahoo, D. L. Leslie-Pelecky, and V. Labhasetwar, “Iron oxide nanoparticles for sustained delivery of anticancer agents,” Mol. Pharm. 2(3), 194–205 (2005).
[Crossref] [PubMed]

Nano Lett. (1)

I. Gorelikov and N. Matsuura, “Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles,” Nano Lett. 8(1), 369–373 (2008).
[Crossref] [PubMed]

Nanoscale (2)

J.-C. Boyer and F. C. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale 2(8), 1417–1419 (2010).
[Crossref] [PubMed]

L. Zhou, Z. Li, Z. Liu, M. Yin, J. Ren, and X. Qu, “One-step nucleotide-programmed growth of porous upconversion nanoparticles: application to cell labeling and drug delivery,” Nanoscale 6(3), 1445–1452 (2014).
[Crossref] [PubMed]

Small (1)

C. Li, D. Yang, P. Ma, Y. Chen, Y. Wu, Z. Hou, Y. Dai, J. Zhao, C. Sui, and J. Lin, “Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery,” Small 9(24), 4150–4159 (2013).
[Crossref] [PubMed]

Other (1)

Q. Zhan, J. Liu, Y. Zhao, and X. Zhang, “Research Progress in Nonlinear Upconversion Luminescence of Rare-earth Nanoparticals in Biomedical Optics,” Acta Laser Biology Sinica 1, 004 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive Imaging, photothermal-controlled drug delivery and chemotherapy of cancer cells.

Fig. 2
Fig. 2

(a) TEM images of NaYbF4: 2% Er3+ core UCNPs and a histogram of its size distribution. TEM of (b) UCNP@SiO2 and (c) amplification of the mesoporous silica shell. (d) The emission spectra of UCNPs and UCNP@SiO2. (e) The power dependence of UCNP and UCNP@SiO2. (f) The bright field photograph and fluorescence photograph of UCNP@SiO2 solution. (g) fluorescence imaging of UCNP@SiO2. All the optical characterization measured by 975 nm laser of 15 mW.

Fig. 3
Fig. 3

(a) Photothermal effects of (a) different concentrations of UCNP@SiO2 with a 975 nm laser of 800 mW and (b) UCNP@SiO2 (1.06 mM) with laser of different power. The initial temperatures of the solution were unified at ~20 °C and the subsequent temperature change was measured at room temperature. Each data point is represented as mean ± standard deviation (SD) of three independent experiments.

Fig. 4
Fig. 4

(a) Absorption spectra of UCNP@SiO2, DOX and UCNP@SiO2-DOX. (b) DOX release profile of UCNP@SiO2-DOX in different pH and irradiation power. Each data point is represented as mean ± standard deviation (SD) of three independent experiments.

Fig. 5
Fig. 5

Scanning microscopy images of Hela cell incubated with (a) UCNP@SiO2 and (b) UCNP@SiO2-DOX for 12 h.

Fig. 6
Fig. 6

(a) Differences in the viability of nanocomposites-treated cells irradiated with the 975 nm laser of 15mW and 300 mW for 8min, determined by a CCK-8 assay. *P < 0.05; **P < 0.01. Fluorescence microscopy images of Hela cell (b) incubated with UCNP@SiO2-DOX and (c) incubated with UCNP@SiO2-DOX + 300 mW laser. Dead cells were stained red with PI.

Tables (1)

Tables Icon

Table 1 Zeta potential of nanoparticles.

Metrics