Abstract

Here we demonstrate the control of magnetic dipole spontaneous emission at yellow light by polarization-independent hexagonally arrayed nanorods magnetic metamaterials. By embedding a magnetic dipole into a polarization-independent magnetic metamaterial consisting of hexagonal arrays of paired silver nanorods, the radiative emission enhancement and the Purcell factor around 590 nm have been dramatically increased 44 times for a significant general far-field emission enhancement and 57 times for a maximum general magnetic dipole near-field emission enhancement, respectively. Moreover, the polarization-independent enhancements are found to be a robust variation of the dipole’s positions and structure geometries, showing nice fabrication tolerance for practical applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electric and magnetic resonances in optical metamaterial for efficient absorption enhancement in ultrathin CdTe-based photovoltaic cells

Lin Cui, Ming-Yuan Huang, Yu-Meng You, Yu-Jun Zhang, Gao-Min Li, Shi-Lin Liu, and Chuan-Kun Liu
Opt. Mater. Express 6(5) 1480-1487 (2016)

Brillouin light scattering by spin waves in magnetic metamaterials based on Co nanorods

Y. Veniaminova, A. A. Stashkevich, Y. Roussigné, S. M. Chérif, T. V. Murzina, A. P. Murphy, R. Atkinson, R. J. Pollard, and A. V. Zayats
Opt. Mater. Express 2(9) 1260-1269 (2012)

Metal-substrate-enhanced magnetic dipole resonance in metamaterials for high-performance refractive index sensing

Bo Liu, Chaojun Tang, Jing Chen, Ningyan Xie, Jun Yuan, Huang Tang, and Xiaoqin Zhu
Opt. Mater. Express 8(7) 2008-2016 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  3. G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
    [Crossref] [PubMed]
  4. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  5. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  6. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [Crossref] [PubMed]
  7. A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056609 (2005).
    [Crossref] [PubMed]
  8. E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995).
    [Crossref] [PubMed]
  9. N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
    [Crossref]
  10. J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [Crossref]
  11. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
    [Crossref] [PubMed]
  12. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
    [Crossref] [PubMed]
  13. S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
    [Crossref] [PubMed]
  14. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
    [Crossref]
  15. P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
    [Crossref]
  16. T. Feng, Y. Zhou, D. Liu, and J. Li, “Controlling magnetic dipole transition with magnetic plasmonic structures,” Opt. Lett. 36(12), 2369–2371 (2011).
    [Crossref] [PubMed]
  17. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [Crossref] [PubMed]
  18. W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
    [Crossref]
  19. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [Crossref] [PubMed]
  20. W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
    [Crossref] [PubMed]
  21. W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
    [Crossref] [PubMed]
  22. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
    [Crossref] [PubMed]
  23. N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
    [Crossref] [PubMed]
  24. P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
    [Crossref] [PubMed]
  25. S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503–1506 (2002).
    [PubMed]
  26. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
    [Crossref] [PubMed]
  27. S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
    [Crossref] [PubMed]
  28. S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
    [Crossref] [PubMed]
  29. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
    [Crossref] [PubMed]
  30. S. Karaveli and R. Zia, “Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
    [Crossref] [PubMed]
  31. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  32. H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, “A negative permeability material at red light,” Opt. Express 15(3), 1076–1083 (2007).
    [Crossref] [PubMed]
  33. S. Sun, N. Yi, W. Yao, Q. Song, and S. Xiao, “Enhanced second-harmonic generation from nonlinear optical metamagnetics,” Opt. Express 22(22), 26613–26620 (2014).
    [Crossref] [PubMed]
  34. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

2015 (1)

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

2014 (2)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

S. Sun, N. Yi, W. Yao, Q. Song, and S. Xiao, “Enhanced second-harmonic generation from nonlinear optical metamagnetics,” Opt. Express 22(22), 26613–26620 (2014).
[Crossref] [PubMed]

2013 (1)

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

2012 (2)

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

2011 (5)

S. Karaveli and R. Zia, “Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

T. Feng, Y. Zhou, D. Liu, and J. Li, “Controlling magnetic dipole transition with magnetic plasmonic structures,” Opt. Lett. 36(12), 2369–2371 (2011).
[Crossref] [PubMed]

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (7)

Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17(9), 7479–7490 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
[Crossref]

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

2008 (1)

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (3)

S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
[Crossref] [PubMed]

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
[Crossref] [PubMed]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[Crossref] [PubMed]

2005 (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056609 (2005).
[Crossref] [PubMed]

2002 (1)

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503–1506 (2002).
[PubMed]

1998 (1)

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

1995 (2)

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995).
[Crossref] [PubMed]

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Aizpurua, J.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Albella, P.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Ameen Poyli, M.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Atwater, H. A.

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Banerjee, P.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

Bao, J.

N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Belyanin, A.

N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
[Crossref]

Bidault, S.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Boltasseva, A.

Bond, N.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Briggs, R. M.

Brongersma, M. L.

Cai, W.

Capasso, F.

N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
[Crossref]

Chettiar, U. K.

Cobley, C. M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Costard, E.

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Cui, L.

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de Silva, V. C.

Drachev, V. P.

Ellis, B.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Feng, T.

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Gayral, B.

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gómez Rivas, J.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Gösele, U.

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[Crossref] [PubMed]

Grard, J.

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Halevi, P.

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056609 (2005).
[Crossref] [PubMed]

Haller, E. E.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Harris, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Henn-Lecordier, L.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hu, W.L.

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

Hurst, S. J.

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
[Crossref] [PubMed]

Ji, N.

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

Ji, R.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[Crossref] [PubMed]

Jun, Y. C.

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Karaveli, S.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
[Crossref] [PubMed]

Kildishev, A. V.

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Lagendijk, A.

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995).
[Crossref] [PubMed]

Lee, S. B.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

Lee, W.

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[Crossref] [PubMed]

Legrand, B.

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Li, J.

Li, M.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Li, W.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Liu, D.

Liu, Z.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Lu, Z.

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Maier, S. A.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Majumdar, A.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

Mayer, M. A.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Mirkin, C. A.

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
[Crossref] [PubMed]

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503–1506 (2002).
[PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Moran, C. H.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Moreno, F.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nielsch, K.

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503–1506 (2002).
[PubMed]

Payne, E. K.

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
[Crossref] [PubMed]

Peng, X. N.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Perez, I.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

Petykiewicz, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Pippel, E.

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

Polman, A.

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qin, D.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Qin, L.

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
[Crossref] [PubMed]

Roberge, H.

S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
[Crossref] [PubMed]

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Ruan, W.

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

Rubloff, G. W.

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

Rycenga, M.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Sánchez, A. S.

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056609 (2005).
[Crossref] [PubMed]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Sarmiento, T.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Schimidt, M. K.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Scholz, R.

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

Schwirn, K.

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

Seanz, J. J.

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Sermage, B.

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Shalaev, V. M.

Shambat, G.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Shan, X.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Snoeks, E.

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995).
[Crossref] [PubMed]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Song, Q.

Song, Q.H.

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Steinhart, M.

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

Stout, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Su, X. R.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Sun, S.

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

S. Sun, N. Yi, W. Yao, Q. Song, and S. Xiao, “Enhanced second-harmonic generation from nonlinear optical metamagnetics,” Opt. Express 22(22), 26613–26620 (2014).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Taton, T. A.

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503–1506 (2002).
[PubMed]

Thierry-Mieg, V.

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

Veres, T.

S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
[Crossref] [PubMed]

Vuckovic, J.

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Wang, C.

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

Wang, Q. Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Xia, Y.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Xiao, S.

Xiao, S.M.

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Yang, Z. J.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Yao, W.

Yelon, A.

S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
[Crossref] [PubMed]

Yi, N.

Yi, N.B.

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

Yu, N.

N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
[Crossref]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, H. K.

Zeng, J.

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

Zhang, Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, Z.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Zhang, Z. S.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Zhao, B.

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

Zhao, S.

S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
[Crossref] [PubMed]

Zhou, Y.

Zhou, Z. K.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Zia, R.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

S. Karaveli and R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. J. Hurst, E. K. Payne, L. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew. Chem. Int. Ed. Engl. 45(17), 2672–2692 (2006).
[Crossref] [PubMed]

Chem. Rev. (1)

M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, “Controlling the synthesis and assembly of silver nanostructures for plasmonic applications,” Chem. Rev. 111(6), 3669–3712 (2011).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

S. Zhao, H. Roberge, A. Yelon, and T. Veres, “New application of AAO template: a mold for nanoring and nanocone arrays,” J. Am. Chem. Soc. 128(38), 12352–12353 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

P. Albella, M. Ameen Poyli, M. K. Schimidt, S. A. Maier, F. Moreno, J. J. Seanz, and J. Aizpurua, “Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers,” J. Phys. Chem. C 117(26), 13573–13584 (2013).
[Crossref]

Langmuir (1)

N. Ji, W. Ruan, C. Wang, Z. Lu, and B. Zhao, “Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface-enhanced Raman scattering and thin film interference,” Langmuir 25(19), 11869–11873 (2009).
[Crossref] [PubMed]

Nano Lett. (2)

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramatically enhanced light emission and transmission,” Nano Lett. 11(1), 49–55 (2011).
[Crossref] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett. 7(9), 2871–2875 (2007).
[Crossref] [PubMed]

Nat. Commun. (2)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3, 979 (2012).
[Crossref] [PubMed]

G. Shambat, B. Ellis, A. Majumdar, J. Petykiewicz, M. A. Mayer, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode,” Nat. Commun. 2, 539 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

W. Lee, R. Ji, U. Gösele, and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. Mater. 5(9), 741–747 (2006).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium,” Nat. Nanotechnol. 3(4), 234–239 (2008).
[Crossref] [PubMed]

P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, and G. W. Rubloff, “Nanotubular metal-insulator-metal capacitor arrays for energy storage,” Nat. Nanotechnol. 4(5), 292–296 (2009).
[Crossref] [PubMed]

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

New J. Phys. (1)

N. Yu, A. Belyanin, J. Bao, and F. Capasso, “Controlled modification of erbium lifetime by near-field coupling to metallic films,” New J. Phys. 11(1), 015003 (2009).
[Crossref]

Opt. Commun. (1)

W.L. Hu, N.B. Yi, S. Sun, L. Cui, Q.H. Song, and S.M. Xiao, “Enhancement of magnetic dipole emission at yellow light in optical metamaterials,” Opt. Commun. 350, 202–206 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bond, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B 85(24), 245432 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056609 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

E. Snoeks, A. Lagendijk, and A. Polman, “Measuring and modifying the spontaneous emission rate of erbium near an interface,” Phys. Rev. Lett. 74(13), 2459–2462 (1995).
[Crossref] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref] [PubMed]

J. Grard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

S. Karaveli and R. Zia, “Spectral Tuning by Selective Enhancement of Electric and Magnetic Dipole Emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref] [PubMed]

Science (2)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[Crossref] [PubMed]

S. J. Park, T. A. Taton, and C. A. Mirkin, “Array-based electrical detection of DNA with nanoparticle probes,” Science 295(5559), 1503–1506 (2002).
[PubMed]

Other (1)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Solid pattern and (b) cross-sectional schematic of the nanorod structure. The black areas, violet areas and blue areas represent alumina, silver and glass substrate respectively.
Fig. 2
Fig. 2 The reflection spectrum (dash line), transmission spectrum (dot line) and F|H|2 (solid line) as a function of wavelength under Tx polarization incident light. (a) and Ty polarization incident light(b), 3D view of magnetic field distribution around the magnetic resonance of 1/4 paired silver nanorods under Tx polarization incident light (c) and Ty polarization incident light (d), 2D xoz (e) plane and yoz plane (g) view of the electric displacement and magnetic field distribution around the magnetic resonance of 1/4 paired silver nanorods under Tx polarization incident light, 2D xoz (f) plane and yoz plane (h) view of the electric displacement and magnetic field distribution around the magnetic resonance of 1/4 paired silver nanorods under Ty polarization incident light.
Fig. 3
Fig. 3 Fp (circles in red solid line) and RE(circles in black solid line) for the magnetic dipole at various wavelengths with the dipole moment direction parallel to x-axis (a) and y-axis (b) respectively.
Fig. 4
Fig. 4 Fpx (circles in red solid line), REx (circles in black solid line) as a function of position a long x-axis (a), y-axis (c) and z-axis (e) at 590 nm. Fpy (circles in red solid line), REy (circles in black solid line) as a function of position a long x-axis (b), y-axis (d) and z-axis (f) at 590 nm. positive value of a and b mean the magnetic dipole is located on the right side of O along x-axis, and negative (positive) value of c means the magnetic dipole is located on the down (up) side of O along z -axis in Fig. 2 (c) and (d).
Fig. 5
Fig. 5 Fp (circles in red solid line) and RE (circles in black dashed line) at 590 nm as a function of angular deviation (θ) with the dipole moment direction parallel to x-axis (a) and y-axis (b) respectively. The insert is the trapezoidal cross-sectional schematic of structure.
Fig. 6
Fig. 6 Fp (red dot line), RE (black dot line), |H|2 (red solid line) and λres (black solid line) as a function of nanorod diameter with the dipole moment direction parallel to x-axis (a) and y-axis (b) respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

γ= 2 ω 0 3 ε 0 | m | 2 ρ m ( r 0 , ω 0 )
ρ m ( r 0 , ω 0 )= 6 ω 0 π c 2 [ n m Im{ G ( r 0 , r 0 ; ω 0 ) } n m ]
F p = γ γ 0 = P r + P abs P 0
RE= P r P 0

Metrics