Abstract

The helical pitch (p) dependence of the electro-optic characteristics in low monomer concentration polymer/cholesteric liquid crystal (PChLC) nanocomposites is reported. Four mixtures with different helical pitches were prepared by mixing a ChLC and a mesogenic monomer with a photoinitiator, and polymerized at room (20 °C) or low (−20 °C) temperatures to fabricate samples exhibiting the 'polymer-stabilized' and 'deformation-free' responses, respectively. Reflecting the difference in the electro-optic response modes, the threshold electric field showed different dependencies on the helical pitch. The 'polymer-stabilized' PChLCs showed a p-0.57 dependence on the pitch, which is a consequence of the response being dominated by the Helfrich deformation. The 'deformation-free' samples, on the other hand, showed a smaller dependence on pitch of approximately p-0.33. The decrease in the pitch dependence is described as a consequence of the nano-confined LC molecules undergoing a Fredericks-type reorientation instead of a helix deformation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deformation-free switching of polymer-stabilized cholesteric liquid crystals by low-temperature polymerization

Hoekyung Kim, Yo Inoue, Junji Kobashi, Yasutaka Maeda, Hiroyuki Yoshida, and Masanori Ozaki
Opt. Mater. Express 6(3) 705-710 (2016)

Thickness-independent dynamics in cholesteric liquid crystals

Yo Inoue, Mayo Hattori, and Hiroshi Moritake
Opt. Express 25(4) 3566-3577 (2017)

Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response

Yo Inoue, Hiroyuki Yoshida, and Masanori Ozaki
Opt. Mater. Express 4(5) 916-923 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).
  2. D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
    [Crossref]
  3. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
    [Crossref]
  4. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
    [Crossref] [PubMed]
  5. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [Crossref]
  6. S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
    [Crossref]
  7. L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
    [Crossref]
  8. P. Pollmann and H. Stegemeyer, “Pressure dependence of the helical structure of cholesteric mesophases,” Chem. Phys. Lett. 20(1), 87–89 (1973).
    [Crossref]
  9. T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
    [Crossref] [PubMed]
  10. D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
    [Crossref]
  11. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
    [Crossref]
  12. Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-free, microsecond electro-optic tuning of liquid crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
    [Crossref]
  13. J. Kobashi, H. Kim, H. Yoshida, and M. Ozaki, “Polarization-independent submillisecond phase modulation utilizing polymer/short-pitch cholesteric liquid crystal composite,” Opt. Lett. 40(22), 5363–5366 (2015).
    [Crossref] [PubMed]
  14. H. Kim, Y. Inoue, J. Kobashi, Y. Maeda, H. Yoshida, and M. Ozaki, “Deformation-free switching of polymer-stabilized cholesteric liquid crystals by low-temperature polymerization,” Opt. Mater. Express 6(3), 705–710 (2016).
    [Crossref]
  15. R. Cano, “Interprétation des discontinuités de grandjean,” Bull. Soc. Fr. Mineral. Cristallogr. 91, 20–27 (1968).
  16. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
    [Crossref]
  17. S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
    [Crossref]
  18. G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
    [Crossref] [PubMed]
  19. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (John Wiley & Sons, 2006), Chap. 10.
  20. H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
    [Crossref]
  21. W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
    [Crossref]
  22. C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
    [Crossref]
  23. Y. Inoue, H. Yoshida, and M. Ozaki, “Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response,” Opt. Mater. Express 4(5), 916–923 (2014).
    [Crossref]
  24. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 5.

2016 (1)

2015 (1)

2014 (2)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Y. Inoue, H. Yoshida, and M. Ozaki, “Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response,” Opt. Mater. Express 4(5), 916–923 (2014).
[Crossref]

2013 (1)

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-free, microsecond electro-optic tuning of liquid crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

2012 (1)

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

2011 (2)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

2010 (2)

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

2009 (1)

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

2007 (1)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

2006 (1)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

1998 (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

1996 (1)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

1994 (2)

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

1992 (1)

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[Crossref]

1973 (1)

P. Pollmann and H. Stegemeyer, “Pressure dependence of the helical structure of cholesteric mesophases,” Chem. Phys. Lett. 20(1), 87–89 (1973).
[Crossref]

1970 (1)

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

1968 (1)

R. Cano, “Interprétation des discontinuités de grandjean,” Bull. Soc. Fr. Mineral. Cristallogr. 91, 20–27 (1968).

Agez, G.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Bourgerette, C.

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Bunning, T. J.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Cano, R.

R. Cano, “Interprétation des discontinuités de grandjean,” Bull. Soc. Fr. Mineral. Cristallogr. 91, 20–27 (1968).

Cazzell, S. A.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Cheng, K.-L.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

Chien, L. C.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Chien, L.-C.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[Crossref]

Choi, S. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Coles, H. J.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Doane, J. W.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[Crossref]

Freer, A. S.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

Glasser, J.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Helfrich, W.

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Huck, W. T. S.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Hudson, S. D.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

Inoue, Y.

H. Kim, Y. Inoue, J. Kobashi, Y. Maeda, H. Yoshida, and M. Ozaki, “Deformation-free switching of polymer-stabilized cholesteric liquid crystals by low-temperature polymerization,” Opt. Mater. Express 6(3), 705–710 (2016).
[Crossref]

Y. Inoue, H. Yoshida, and M. Ozaki, “Nematic liquid crystal nanocomposite with scattering-free, microsecond electro-optic response,” Opt. Mater. Express 4(5), 916–923 (2014).
[Crossref]

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-free, microsecond electro-optic tuning of liquid crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Kim, H.

Kobashi, J.

Kosa, T.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Kubo, H.

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-free, microsecond electro-optic tuning of liquid crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

Liang, C.-C.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

Maeda, Y.

Mitov, M.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Morris, S. M.

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

Natarajan, L. V.

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Nemati, H.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

Ozaki, M.

Pollmann, P.

P. Pollmann and H. Stegemeyer, “Pressure dependence of the helical structure of cholesteric mesophases,” Chem. Phys. Lett. 20(1), 87–89 (1973).
[Crossref]

Rajaram, C. V.

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Relaix, S.

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

Shiozaki, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

Shiu, J.-W.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

Siwecki, S. A.

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Stegemeyer, H.

P. Pollmann and H. Stegemeyer, “Pressure dependence of the helical structure of cholesteric mesophases,” Chem. Phys. Lett. 20(1), 87–89 (1973).
[Crossref]

Su, L.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Sukhomlinova, L.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Sutherland, R. L.

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Taheri, B.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Tondiglia, V. P.

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Tsai, C.-C.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

West, J. L.

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

White, T. J.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Wofford, J. M.

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

Yang, D. K.

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Yang, D.-K.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[Crossref]

Yaniv, Z.

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yoshida, H.

Zola, R. S.

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

Adv. Mater. (3)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network,” Adv. Mater. 23(46), 5498–5501 (2011).
[Crossref] [PubMed]

S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, “Electrically tuneable liquid crystal photonic bandgaps,” Adv. Mater. 21(38–39), 3915–3918 (2009).
[Crossref]

T. J. White, S. A. Cazzell, A. S. Freer, D. K. Yang, L. Sukhomlinova, L. Su, T. Kosa, B. Taheri, and T. J. Bunning, “Widely tunable, photoinvertible cholesteric liquid crystals,” Adv. Mater. 23(11), 1389–1392 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Inoue, H. Yoshida, H. Kubo, and M. Ozaki, “Deformation-free, microsecond electro-optic tuning of liquid crystals,” Adv. Opt. Mater. 1(3), 256–263 (2013).
[Crossref]

Appl. Phys. Lett. (5)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal,” Appl. Phys. Lett. 89(25), 251907 (2006).
[Crossref]

L. V. Natarajan, T. J. White, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, S. A. Siwecki, and T. J. Bunning, “Laser initiated thermal tuning of a cholesteric liquid crystal,” Appl. Phys. Lett. 97(1), 011107 (2010).
[Crossref]

D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

D.-K. Yang, L.-C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett. 60(25), 3102–3104 (1992).
[Crossref]

W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17(12), 531–532 (1970).
[Crossref]

Bull. Soc. Fr. Mineral. Cristallogr. (1)

R. Cano, “Interprétation des discontinuités de grandjean,” Bull. Soc. Fr. Mineral. Cristallogr. 91, 20–27 (1968).

Chem. Mater. (1)

C. V. Rajaram, S. D. Hudson, and L. C. Chien, “Effect of polymerization temperature on the morphology and electrooptic properties of polymer-stabilized liquid crystals,” Chem. Mater. 8(10), 2451–2460 (1996).
[Crossref]

Chem. Phys. Lett. (1)

P. Pollmann and H. Stegemeyer, “Pressure dependence of the helical structure of cholesteric mesophases,” Chem. Phys. Lett. 20(1), 87–89 (1973).
[Crossref]

J. Appl. Phys. (2)

D.-K. Yang, J. L. West, L.-C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys. 76(2), 1331–1333 (1994).
[Crossref]

H. Nemati, D.-K. Yang, K.-L. Cheng, C.-C. Liang, J.-W. Shiu, C.-C. Tsai, and R. S. Zola, “Effects of surface alignment layer and polymer network on the Helfrich deformation in cholesteric liquid crystals,” J. Appl. Phys. 112(12), 124513 (2012).
[Crossref]

Liq. Cryst. (1)

S. Relaix, C. Bourgerette, and M. Mitov, “Broadband reflective cholesteric liquid crystalline gels: volume distribution of reflection properties and polymer network in relation with the geometry of the cell photopolymerization,” Liq. Cryst. 34(9), 1009–1018 (2007).
[Crossref]

Nat. Photonics (1)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4(10), 676–685 (2010).
[Crossref]

Nature (1)

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature 392(6675), 476–479 (1998).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

G. Agez, S. Relaix, and M. Mitov, “Cholesteric liquid crystal gels with a graded mechanical stress,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89(2), 022513 (2014).
[Crossref] [PubMed]

Other (3)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystals Devices (John Wiley & Sons, 2006), Chap. 10.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Dependence of the electro-optic switching on the helical pitch in the PChLC nanocomposites polymerized at 20 °C. (a) Electrical tuning of the SR band in the PChLC nanocomposites with different chiral dopant concentrations. (b) Normalized peak reflectance with respect to the applied electric field at different chiral dopant concentrations. (c) Helical pitch dependence of the threshold electric field. The red solid circles are measured results and red curve is the fitting curve. The blue dotted curve is the fitting curve of β = 0.5.
Fig. 2
Fig. 2 Dependence of the electro-optic switching on the helical pitch in the PChLC nanocomposites polymerized at −20 °C. (a) Electrical tuning of the SR band in the PChLC nanocomposites with different chiral dopant concentrations. (b) Electric field dependence of the SR band position in the PChLC nanocomposites with different chiral dopant concentrations. (c) Normalized SR band-width with respect to the applied electric field at different chiral dopant concentrations. (d) Helical pitch dependence of the threshold electric field. The red solid circles are measured results and red curve is the fitting curve. The blue dotted curve is the fitting curve of β = 0.5.
Fig. 3
Fig. 3 Polarizing optical micrographs of the PChLC nanocomposites with different chiral dopant concentrations. (a) Samples polymerized at 20 °C. (b) Samples polymerized at −20 °C.
Fig. 4
Fig. 4 Chiral dopant concentration dependence of the polymer network morphologies in the PChLC nanocomposites (a) polymerized at 20 °C. (b) polymerized at −20 °C.
Fig. 5
Fig. 5 Chiral dopant concentration dependence of void-size distribution in the PChLC nanocomposites polymerized at 20 °C and −20 °C.
Fig. 6
Fig. 6 Schematics of possible driving mechanism of the PChLC nanocomposite having small domains.

Tables (1)

Tables Icon

Table 1 Compositions and Helical Pitch Length of the Samples Used in This Study

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ= 2πξ p .
E th = π ξ k 1 Δε [ 1+( k 3 2 k 2 k 1 ) ( Φ π ) 2 ] 1 2 ,
E th =π k 1 Δε [ 1 ξ 2 +4( k 3 2 k 2 k 1 ) 1 p 2 ] 1 2 .

Metrics