Abstract

A heavily Ho3+-doped lead silicate glass with low content of hydroxyls was prepared in this paper. Luminescent properties of this glass were characterized. Peak emission cross section reached 3.07 × 10−21 cm2 around 2055 nm and lifetime of Ho3+: 5I7 was fitted to be 1.31 ms. A single-cald fiber was prepared using this glass as the core. An all-fiber configuration was constructed. Under in-band core-pump of a silica fiber laser, a single-mode maximum 60 mW was realized in a 6 cm-long fiber, which shows high potential for single-frequency fiber lasers applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications

Guowu Tang, Tingting Zhu, Wangwang Liu, Wei Lin, Tian Qiao, Min Sun, Dongdan Chen, Qi Qian, and Zhongmin Yang
Opt. Mater. Express 6(6) 2147-2157 (2016)

Ho3+/Yb3+ codoped silicate glasses for 2  μm emission performances

Ruijie Cao, Muzhi Cai, Yu Lu, Ying Tian, Feifei Huang, Shiqing Xu, and Junjie Zhang
Appl. Opt. 55(8) 2065-2070 (2016)

Spectroscopy of thulium and holmium co-doped silicate glasses

Ruijie Cao, Yu Lu, Ying Tian, Feifei Huang, Shiqing Xu, and Junjie Zhang
Opt. Mater. Express 6(7) 2252-2263 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
    [Crossref]
  3. J. Boguslawski, J. Sotor, G. Sobon, R. Kozinski, K. Librant, M. Aksienionek, L. Lipinska, and K. M. Abramski, “Graphene oxide paper as a saturable absorber for Er- and Tm-doped fiber lasers,” Photon. Res. 3(4), 119–124 (2015).
    [Crossref]
  4. N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 um,” J. Endourol. 19(1), 25–31 (2005).
    [Crossref] [PubMed]
  5. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm,” IEEE J. Sel. Top. Quant. 13(3), 567–572 (2007).
    [Crossref]
  6. S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42(15), 2702–2707 (2003).
    [Crossref] [PubMed]
  7. J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in SPIE LASE: Lasers and Applications in Science and Engineering, (International Society for Optics and Photonics, 2009), 71951K–71951K–71957.
  8. X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20(13), 14471–14476 (2012).
    [Crossref] [PubMed]
  9. A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
    [Crossref] [PubMed]
  10. T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).
  11. A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, and J. Haub, “A monolithic cladding pumped holmium-doped fibre laser,” in CLEO: Science and Innovations, (Optical Society of America, 2013), CW1M. 1.
  12. F. Lou, P.-W. Kuan, L. Zhang, S. Wang, Q. Zhou, M. Wang, S. Feng, K. Li, C. Yu, and L. Hu, “2 μm laser properties of Tm3+-doped large core sol-gel silica fiber,” Opt. Mater. Express 4(6), 1267–1275 (2014).
    [Crossref]
  13. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [Crossref] [PubMed]
  14. S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, “400 mW ultrashort cavity low-noise single-frequency Yb³⁺-doped phosphate fiber laser,” Opt. Lett. 36(18), 3708–3710 (2011).
    [Crossref] [PubMed]
  15. J. Geng, Q. Wang, T. Luo, B. Case, S. Jiang, F. Amzajerdian, and J. Yu, “Single-frequency gain-switched Ho-doped fiber laser,” Opt. Lett. 37(18), 3795–3797 (2012).
    [Crossref] [PubMed]
  16. C. Yao, C. He, Z. Jia, S. Wang, G. Qin, Y. Ohishi, and W. Qin, “Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing,” Opt. Lett. 40(20), 4695–4698 (2015).
    [Crossref] [PubMed]
  17. X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
    [Crossref]
  18. X. Wang, L. Hu, W. Xu, S. Wang, L. Zhang, C. Yu, and D. Chen, “Spectroscopic properties of Ho3+ and Al3+
  19. F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
    [Crossref] [PubMed]
  20. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  21. Q. Zhang, J. Ding, Y. Shen, G. Zhang, G. Lin, J. Qiu, and D. Chen, “Infrared emission properties and energy transfer between Tm3+ and Ho3+ in lanthanum aluminum germanate glasses,” J. Opt. Soc. Am. B 27(5), 975–980 (2010).
    [Crossref]
  22. E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” in SPIE LASE, (International Society for Optics and Photonics, 2014), 896120–896120–896129.
  23. F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7μm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
    [Crossref]
  24. S. Li, P. Wang, H. Xia, J. Peng, L. Tang, Y. Zhang, and H. Jiang, “Tm3+ and Nd3+ singly doped LiYF4 single crystals with 3-5μm mid-infrared luminescence,” Chin. Opt. Lett. 12(2), 021601 (2014).
    [Crossref]
  25. Q. Wang, J. Geng, T. Luo, and S. Jiang, “Mode-locked 2 µm laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009).
    [Crossref] [PubMed]

2015 (2)

2014 (5)

2013 (1)

2012 (3)

2011 (1)

2010 (3)

2009 (2)

2007 (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm,” IEEE J. Sel. Top. Quant. 13(3), 567–572 (2007).
[Crossref]

2005 (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 um,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

2003 (1)

1995 (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Abramski, K. M.

Aksienionek, M.

Amzajerdian, F.

Bennetts, S.

Boguslawski, J.

Broeng, J.

Carter, A.

Case, B.

Chen, D.

Chen, M.

Cheng, J.

Davidson, A.

Ding, J.

Ehrenreich, T.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Fan, X.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

X. Fan, M. Chen, A. Shirakawa, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High power Yb-doped photonic bandgap fiber oscillator at 1178 nm,” Opt. Express 20(13), 14471–14476 (2012).
[Crossref] [PubMed]

Feng, S.

Feng, Z. M.

Fried, N. M.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 um,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Geng, J.

Haub, J.

He, C.

Hemming, A.

Hu, L.

Huang, F.

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm,” IEEE J. Sel. Top. Quant. 13(3), 567–572 (2007).
[Crossref]

S. D. Jackson and S. Mossman, “Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers,” Appl. Opt. 42(15), 2702–2707 (2003).
[Crossref] [PubMed]

Jia, Z.

Jiang, H.

Jiang, S.

Jiang, Z. H.

Kozinski, R.

Kuan, P.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Kuan, P.-W.

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm,” IEEE J. Sel. Top. Quant. 13(3), 567–572 (2007).
[Crossref]

Leveille, R.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Li, K.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

F. Lou, P.-W. Kuan, L. Zhang, S. Wang, Q. Zhou, M. Wang, S. Feng, K. Li, C. Yu, and L. Hu, “2 μm laser properties of Tm3+-doped large core sol-gel silica fiber,” Opt. Mater. Express 4(6), 1267–1275 (2014).
[Crossref]

Li, M.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Li, S.

Li, W.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7μm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Librant, K.

Lin, G.

Lipinska, L.

Liu, T.

Liu, X.

Lou, F.

Luo, T.

Lyngsø, J. K.

Majid, I.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Mossman, S.

Moulton, P.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Murray, K. E.

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 um,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

Ohishi, Y.

Olausson, C. B.

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Peng, J.

Peng, M.

Qian, Q.

Qin, G.

Qin, W.

Qiu, J.

Rines, G.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm,” IEEE J. Sel. Top. Quant. 13(3), 567–572 (2007).
[Crossref]

Shen, S.

Shen, Y.

Shirakawa, A.

Simakov, N.

Sobon, G.

Sotor, J.

Tang, L.

Tankala, K.

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Ueda, K.

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Wang, L.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Wang, M.

Wang, P.

Wang, Q.

Wang, S.

Wang, X.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Wei, X.

Xia, H.

Xu, S.

Xu, S. H.

Yang, Z.

Yang, Z. M.

Yao, C.

Yu, C.

Yu, J.

Zhang, G.

Zhang, L.

Zhang, Q.

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhang, Y.

Zhou, Q.

Appl. Opt. (1)

Chin. Opt. Lett. (2)

IEEE J. Sel. Top. Quant. (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and Development of High-Power and Highly Efficient Silica-Based Fiber Lasers Operating at 2μm,” IEEE J. Sel. Top. Quant. 13(3), 567–572 (2007).
[Crossref]

J. Endourol. (1)

N. M. Fried and K. E. Murray, “High-power thulium fiber laser ablation of urinary tissues at 1.94 um,” J. Endourol. 19(1), 25–31 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho materials: spectroscopy and lasers,” Laser Phys. 19(4), 855–866 (2009).
[Crossref]

Mater. Lett. (1)

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. (1)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Proc. SPIE (1)

T. Ehrenreich, R. Leveille, I. Majid, K. Tankala, G. Rines, and P. Moulton, “1-kW, all-glass Tm: fiber laser,” Proc. SPIE 7580, 758016 (2010).

Other (4)

A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, and J. Haub, “A monolithic cladding pumped holmium-doped fibre laser,” in CLEO: Science and Innovations, (Optical Society of America, 2013), CW1M. 1.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in SPIE LASE: Lasers and Applications in Science and Engineering, (International Society for Optics and Photonics, 2009), 71951K–71951K–71957.

X. Wang, L. Hu, W. Xu, S. Wang, L. Zhang, C. Yu, and D. Chen, “Spectroscopic properties of Ho3+ and Al3+

E. J. Friebele, C. G. Askins, J. R. Peele, B. M. Wright, N. J. Condon, S. O’Connor, C. G. Brown, and S. R. Bowman, “Ho-doped fiber for high energy laser applications,” in SPIE LASE, (International Society for Optics and Photonics, 2014), 896120–896120–896129.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectrum of Ho3+-doped SPANK glass.

Fig. 2
Fig. 2

(a) Transmittance spectra of Ho3+: SPANK glass in the range of 2000-4000 cm−1. Inset is decay curve of Ho3+: 5I7 . (b) Normalized absorption spectrum and emission spectrum of Ho3+-doped SPANK in the range of 1700-2200 nm.

Fig. 3
Fig. 3

Setup of test platform for Ho3+-doped single-clad SPANK fiber. Cross section of Ho3+: SPANK single-clad fiber is shown inset.

Fig. 4
Fig. 4

(a) Normalized spectra of pump laser, ASE, and signal laser; (b) Efficiency of signal power with respect to LD pump current.

Tables (1)

Tables Icon

Table 1 J-O parametersΩ2, Ω4, Ω6, spontaneous transition rate (A10), radiative lifetime τrad in various glass matrices

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α O H =ln( T 0 /T)/l

Metrics