Abstract

Anisotropic gold nanoparticles are chemically stable and serve as localized surface plasmon resonance (LSPR) sensors operatable in the first biological optical window (650−950 nm). However, alternative materials are awaited because they are expensive and somewhat complicated to prepare. Here we employ CuS (covellite) nanoplates, which consist of earth-abundant elements and exhibit LSPR in the near-infrared region, as materials for LSPR sensors. The CuS nanoplates respond to refractive index changes of the surrounding medium in the second biological optical window (1000−1350 nm). The refractive index sensitivity (160−600 nm RIU−1) and the operation wavelength (1100−1250 nm) of the CuS nanoplates can be controlled by simply changing the composition of reaction suspension for nanoplate synthesis.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic enhancement of third-order nonlinear optical susceptibilities in self-doped Cu2-xS nanoparticles

Yasushi Hamanaka, Tatsunori Hirose, Kaoru Yamada, and Toshihiro Kuzuya
Opt. Mater. Express 6(12) 3838-3848 (2016)

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy

Maysamreza Chamanzar, Zhixuan Xia, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(26) 32086-32098 (2013)

LSPR optical fiber biosensor based on a 3D composite structure of gold nanoparticles and multilayer graphene films

Can Li, Zhen Li, Shuanglu Li, Yanan Zhang, Baoping Sun, Yuehao Yu, Haiyang Ren, Shouzhen Jiang, and Weiwei Yue
Opt. Express 28(5) 6071-6083 (2020)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  2. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  3. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  4. T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
    [Crossref] [PubMed]
  5. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
    [Crossref] [PubMed]
  6. T. Kawawaki, N. Shinjo, and T. Tatsuma, “Backward-scattering-based localized surface plasmon resonance sensors with gold nanospheres and nanoshells,” Anal. Sci. (to be published).
  7. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref] [PubMed]
  8. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
    [Crossref] [PubMed]
  9. M. A. Mahmoud and M. A. El-Sayed, “Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors,” J. Am. Chem. Soc. 132(36), 12704–12710 (2010).
    [Crossref] [PubMed]
  10. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
    [Crossref] [PubMed]
  11. K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
    [Crossref]
  12. E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
    [Crossref] [PubMed]
  13. E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
    [Crossref] [PubMed]
  14. H. Nishi, S. Hiroya, and T. Tatsuma, “Potential-scanning localized surface plasmon resonance sensor,” ACS Nano 9(6), 6214–6221 (2015).
    [Crossref] [PubMed]
  15. H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 90(12), 4059–4061 (2007).
  16. M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
    [Crossref] [PubMed]
  17. J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
    [Crossref] [PubMed]
  18. X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
    [Crossref]
  19. Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
    [Crossref] [PubMed]
  20. L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
    [Crossref] [PubMed]
  21. Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
    [Crossref]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  23. A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
    [Crossref] [PubMed]
  24. H. J. Gotsis, A. C. Barnes, and P. Strange, “Experimental and theoretical investigation of the crystal structures of CuS,” J. Phys. Condens. Matter 4(50), 10461–10468 (1992).
    [Crossref]

2015 (4)

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

H. Nishi, S. Hiroya, and T. Tatsuma, “Potential-scanning localized surface plasmon resonance sensor,” ACS Nano 9(6), 6214–6221 (2015).
[Crossref] [PubMed]

L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
[Crossref] [PubMed]

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

2014 (1)

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

2013 (2)

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

2012 (1)

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

2011 (2)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

2010 (1)

M. A. Mahmoud and M. A. El-Sayed, “Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors,” J. Am. Chem. Soc. 132(36), 12704–12710 (2010).
[Crossref] [PubMed]

2009 (2)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

2008 (3)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

2007 (2)

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 90(12), 4059–4061 (2007).

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

2005 (3)

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[Crossref] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

1992 (1)

H. J. Gotsis, A. C. Barnes, and P. Strange, “Experimental and theoretical investigation of the crystal structures of CuS,” J. Phys. Condens. Matter 4(50), 10461–10468 (1992).
[Crossref]

Adachi, K.

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 90(12), 4059–4061 (2007).

Akiyoshi, K.

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

Alemi, A.

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

Alivisatos, A. P.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Altamura, D.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Barnes, A. C.

H. J. Gotsis, A. C. Barnes, and P. Strange, “Experimental and theoretical investigation of the crystal structures of CuS,” J. Phys. Condens. Matter 4(50), 10461–10468 (1992).
[Crossref]

Brioude, A.

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[Crossref] [PubMed]

Carbone, L.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Cartwright, A. N.

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Chen, L.

L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Cozzoli, P. D.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

D’Agostino, S.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Della Sala, F.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

El-Sayed, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors,” J. Am. Chem. Soc. 132(36), 12704–12710 (2010).
[Crossref] [PubMed]

Ewers, T.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Giannini, C.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Gotsis, H. J.

H. J. Gotsis, A. C. Barnes, and P. Strange, “Experimental and theoretical investigation of the crystal structures of CuS,” J. Phys. Condens. Matter 4(50), 10461–10468 (1992).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Grillo, V.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hiroya, S.

H. Nishi, S. Hiroya, and T. Tatsuma, “Potential-scanning localized surface plasmon resonance sensor,” ACS Nano 9(6), 6214–6221 (2015).
[Crossref] [PubMed]

Hosseinpour, Z.

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

Jain, P. K.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Kanehara, M.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Katagi, Y.

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

Kawawaki, T.

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

T. Kawawaki, N. Shinjo, and T. Tatsuma, “Backward-scattering-based localized surface plasmon resonance sensors with gold nanospheres and nanoshells,” Anal. Sci. (to be published).

Kazuma, E.

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Khandar, A. A.

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

Koike, H.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Kryschi, C.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Law, W. C.

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Lie, X.

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Luther, J. M.

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Mahmoud, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors,” J. Am. Chem. Soc. 132(36), 12704–12710 (2010).
[Crossref] [PubMed]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Matsubara, K.

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Nishi, H.

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

H. Nishi, S. Hiroya, and T. Tatsuma, “Potential-scanning localized surface plasmon resonance sensor,” ACS Nano 9(6), 6214–6221 (2015).
[Crossref] [PubMed]

Nobile, C.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Oelsner, C.

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Pileni, M. P.

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Sakamoto, M.

L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
[Crossref] [PubMed]

Sato, R.

L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shinjo, N.

T. Kawawaki, N. Shinjo, and T. Tatsuma, “Backward-scattering-based localized surface plasmon resonance sensors with gold nanospheres and nanoshells,” Anal. Sci. (to be published).

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Strange, P.

H. J. Gotsis, A. C. Barnes, and P. Strange, “Experimental and theoretical investigation of the crystal structures of CuS,” J. Phys. Condens. Matter 4(50), 10461–10468 (1992).
[Crossref]

Swihart, M. T.

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Takeda, H.

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 90(12), 4059–4061 (2007).

Tatsuma, T.

H. Nishi, S. Hiroya, and T. Tatsuma, “Potential-scanning localized surface plasmon resonance sensor,” ACS Nano 9(6), 6214–6221 (2015).
[Crossref] [PubMed]

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

T. Kawawaki, N. Shinjo, and T. Tatsuma, “Backward-scattering-based localized surface plasmon resonance sensors with gold nanospheres and nanoshells,” Anal. Sci. (to be published).

Teranishi, T.

L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
[Crossref] [PubMed]

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Wang, J.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Wang, X.

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Watanabe, S.

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

Xie, Y.

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Yoshinaga, T.

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, X.

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

Zhou, B.

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

ACS Nano (2)

H. Nishi, S. Hiroya, and T. Tatsuma, “Potential-scanning localized surface plasmon resonance sensor,” ACS Nano 9(6), 6214–6221 (2015).
[Crossref] [PubMed]

Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, and P. D. Cozzoli, “Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling,” ACS Nano 7(8), 7352–7369 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

X. Lie, X. Wang, B. Zhou, W. C. Law, A. N. Cartwright, and M. T. Swihart, “Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films,” Adv. Funct. Mater. 23(10), 1256–1264 (2013).
[Crossref]

Adv. Mater. (1)

K. Matsubara and T. Tatsuma, “Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces,” Adv. Mater. 19(19), 2802–2806 (2007).
[Crossref]

Chem. Commun. (Camb.) (2)

E. Kazuma and T. Tatsuma, “Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO2 and application to versatile photochromism,” Chem. Commun. (Camb.) 48(12), 1733–1735 (2012).
[Crossref] [PubMed]

T. Tatsuma, Y. Katagi, S. Watanabe, K. Akiyoshi, T. Kawawaki, H. Nishi, and E. Kazuma, “Direct output of electrical signals from LSPR sensors on the basis of plasmon-induced charge separation,” Chem. Commun. (Camb.) 51(28), 6100–6103 (2015).
[Crossref] [PubMed]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Faraday Discuss. (1)

L. Chen, M. Sakamoto, R. Sato, and T. Teranishi, “Determination of a localized surface plasmon resonance mode of Cu7S4 nanodisks by plasmon coupling,” Faraday Discuss. 181, 355–364 (2015).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

H. Takeda and K. Adachi, “Near infrared absorption of tungsten oxide nanoparticle dispersions,” J. Am. Ceram. Soc. 90(12), 4059–4061 (2007).

J. Am. Chem. Soc. (3)

M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, “Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region,” J. Am. Chem. Soc. 131(49), 17736–17737 (2009).
[Crossref] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

M. A. Mahmoud and M. A. El-Sayed, “Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors,” J. Am. Chem. Soc. 132(36), 12704–12710 (2010).
[Crossref] [PubMed]

J. Phys. Chem. B (3)

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B 109(46), 21556–21565 (2005).
[Crossref] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

A. Brioude and M. P. Pileni, “Silver nanodisks: optical properties study using the discrete dipole approximation method,” J. Phys. Chem. B 109(49), 23371–23377 (2005).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

H. J. Gotsis, A. C. Barnes, and P. Strange, “Experimental and theoretical investigation of the crystal structures of CuS,” J. Phys. Condens. Matter 4(50), 10461–10468 (1992).
[Crossref]

Langmuir (1)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Nanoscale (1)

E. Kazuma and T. Tatsuma, “Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,” Nanoscale 6(4), 2397–2405 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

J. M. Luther, P. K. Jain, T. Ewers, and A. P. Alivisatos, “Localized surface plasmon resonances arising from free carriers in doped quantum dots,” Nat. Mater. 10(5), 361–366 (2011).
[Crossref] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: Second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

New J. Chem. (1)

Z. Hosseinpour, A. Alemi, A. A. Khandar, X. Zhao, and Y. Xie, “A controlled solvothermal synthesis of CuS hierarchical structures and their natural-light-induced photocatalytic properties,” New J. Chem. 39(7), 5470–5476 (2015).
[Crossref]

Other (1)

T. Kawawaki, N. Shinjo, and T. Tatsuma, “Backward-scattering-based localized surface plasmon resonance sensors with gold nanospheres and nanoshells,” Anal. Sci. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Extinction spectra of toleune solutions of the CuS nanoparticles prepared in mixtures of OAm and OAc and (b) the relationship between the OAm volume ratio and the extinction peak wavelength.
Fig. 2
Fig. 2 TEM images of the CuS nanoparticles prepared in mixtures of OAm and OAc. The OAm volume ratio is (a) 15, (b) 25, (c) 55, (d) 75, or (e) 100%. (f) Photograph of the CuS solution (OAm ratio = 100%).
Fig. 3
Fig. 3 XRD patterns of the CuS nanoplates prepared in mixtures of OAm and OAc. Reference pattern of covellite (data from Ref 24) is also shown.
Fig. 4
Fig. 4 (a) Extinction spectra of the CuS nanoplates (the OAm volume ratio = 55%) in mixed solvents of toluene and hexane and (b) the relationship between the refractive index of the solvent and the extinction peak wavelength.
Fig. 5
Fig. 5 Relationships between the extinction peak wavelength and refractive index sensitivity of the present CuS nanoplates and the reported gold nanoparticles (data from Refs 3, 8, and 9). The peak wavelengths were determined in toluene and water for CuS and gold, respectively. The first and second optical windows for biological tissues are also shown.

Metrics